
Simulink® Coverage™
User's Guide

R2023a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Coverage™ User's Guide
© COPYRIGHT 2017–2023 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
September 2017 Online only New for Version 4.0 (Release 2017b)
March 2018 Online only Revised for Version 4.1 (Release 2018a)
September 2018 Online only Revised for Version 4.2 (Release 2018b)
March 2019 Online only Revised for Version 4.3 (Release R2019a)
September 2019 Online only Revised for Version 4.4 (Release R2019b)
March 2020 Online only Revised for Version 5.0 (Release R2020a)
September 2020 Online only Revised for Version 5.1 (Release R2020b)
March 2021 Online only Revised for Version 5.2 (Release R2021a)
September 2021 Online only Revised for Version 5.3 (Release R2021b)
March 2022 Online only Revised for Version 5.4 (Release R2022a)
September 2022 Online only Revised for Version 5.5 (Release R2022b)
March 2023 Online only Revised for Version 5.6 (Release R2023a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Model Coverage Definition
1

Model Coverage . 1-2
Model Coverage Overview . 1-2
Types of Coverage Data . 1-2

Types of Model Coverage . 1-4
Execution Coverage (EC) . 1-4
Decision Coverage (DC) . 1-4
Condition Coverage (CC) . 1-4
Modified Condition/Decision Coverage (MCDC) . 1-5
Cyclomatic Complexity . 1-5
Lookup Table Coverage . 1-6
Signal Range Coverage . 1-6
Signal Size Coverage . 1-7
Objectives and Constraints Coverage . 1-7
Saturate on Integer Overflow Coverage . 1-8
Relational Boundary Coverage . 1-8

Simulink Optimizations and Model Coverage . 1-11
Inlined Parameters . 1-11
Block Reduction . 1-11
Conditional Input Branch Execution . 1-11

Model Objects That Receive Model Coverage
2

Model Objects That Receive Coverage . 2-2
Abs . 2-6
Bias . 2-7
Combinatorial Logic . 2-7
Compare to Constant . 2-7
Compare to Zero . 2-8
Data Type Conversion . 2-8
Dead Zone . 2-8
Delay and Resettable Delay . 2-9
Direct Lookup Table (n-D) . 2-9
Discrete Filter . 2-9
Discrete FIR Filter . 2-10
Discrete-Time Integrator . 2-10
Discrete Transfer Fcn . 2-11
Dot Product . 2-11
Enabled Subsystem . 2-11

iii

Contents

Enabled and Triggered Subsystem . 2-12
Fcn . 2-12
For Iterator, For Iterator Subsystem . 2-13
Gain . 2-13
If, If Action Subsystem . 2-13
Index Vector . 2-14
Interpolation Using Prelookup . 2-14
Library-Linked Objects . 2-14
Logical Operator . 2-15
1-D Lookup Table . 2-15
2-D Lookup Table . 2-16
n-D Lookup Table . 2-16
Math Function . 2-16
MATLAB Function . 2-17
MATLAB System . 2-17
Message Send . 2-17
MinMax . 2-17
Model . 2-17
Multiport Switch . 2-18
Observer Model . 2-18
PID Controller, PID Controller (2 DOF) . 2-19
Product . 2-19
Proof Assumption . 2-19
Proof Objective . 2-19
Rate Limiter . 2-19
Relational Operator . 2-20
Relay . 2-20
Requirements Table . 2-21
C/C++ S-Function . 2-21
Saturation . 2-22
Saturation Dynamic . 2-23
Sign . 2-23
Simulink Design Verifier Functions in MATLAB Function Blocks 2-23
Sqrt, Signed Sqrt, Reciprocal Sqrt . 2-23
Sum, Add, Subtract, Sum of Elements . 2-23
Switch . 2-24
SwitchCase, SwitchCase Action Subsystem . 2-24
Test Condition . 2-24
Test Objective . 2-24
Triggered Models . 2-25
Triggered Subsystem . 2-25
Trigonometric Function . 2-26
Truth Table . 2-26
Unary Minus . 2-26
Weighted Sample Time Math . 2-26
While Iterator, While Iterator Subsystem . 2-27

Model Objects That Do Not Receive Coverage . 2-28

iv Contents

Setting Coverage Options
3

Specify Coverage Options . 3-2
Coverage Pane . 3-2

Access, Manage, and Aggregate Coverage Results 3-7
Accessing Coverage Data from the Results Explorer 3-7
Managing Coverage Data from the Results Explorer 3-12
Accumulating Coverage Data from the Results Explorer 3-13

Cumulative Coverage Data . 3-15
Collect Coverage by Clicking the Run Button to Simulate Your Model . . . 3-15
Collect Coverage Using the Multiple Simulations Pane 3-15
Collect Coverage for Multiple Tests Using the Test Manager in Simulink

Test . 3-15
Collect Coverage Programmatically and Aggregate Results 3-16

Cumulative Coverage Analysis . 3-17

Collect Saturation on Integer Overflow Coverage 3-33

Code Coverage
4

Types of Code Coverage . 4-2
Statement Coverage . 4-2
Condition Coverage . 4-2
Decision Coverage . 4-3
Modified Condition/Decision Coverage (MCDC) . 4-4
Cyclomatic Complexity . 4-4
Relational Boundary Coverage . 4-5
Function Coverage . 4-5
Function Call Coverage . 4-5

Code Coverage for Models in Software-in-the-Loop (SIL) Mode and
Processor-in-the-Loop (PIL) Mode . 4-6

Enable SIL or PIL Code Coverage for a Model . 4-6
Review the Coverage Results for Models in SIL or PIL Mode 4-6
Limitations . 4-8

Collect Code Coverage Metrics with Simulink Coverage 4-9

Specify Code Coverage Options . 4-17
Models with Custom C/C++ Code Blocks . 4-17
Models with Software-in-the-Loop and Processor-in-the-Loop Mode Blocks

. 4-17
Models with MATLAB Function Blocks . 4-18

Coverage for Models with Code Blocks and Simulink Blocks 4-19

v

Software-in-the-Loop Code Coverage . 4-21

Use Justification Rules to Filter Code Coverage Outcomes 4-28

View and Filter Code Coverage Results Using the Code Pane 4-35

Coverage Collection During Simulation
5

Create and Run Test Cases . 5-2

Modified Condition and Decision Coverage (MCDC) Definitions in
Simulink Coverage . 5-3
Differences between Masking MCDC and Unique-Cause MCDC in Simulink

Coverage Coverage Analysis . 5-3
Certification Considerations for MCDC Coverage 5-4
Setting the (MCDC) Definition Used for Simulink Coverage Coverage

Analysis . 5-4
Modified Condition and Decision Coverage in Simulink Design Verifier . . . 5-5

Modified Condition and Decision Coverage in Simulink Design Verifier
. 5-6

MCDC Definitions for Simulink Coverage and Simulink Design Verifier . . . 5-6

Logical Operator Cascade Patterns . 5-9

Analyzing MCDC for Cascaded Logic Blocks . 5-10

View Coverage Results in Simulink Canvas . 5-21
Overview of Model Coverage Highlighting . 5-21
Enable Coverage Highlighting . 5-21
View Coverage Details . 5-23

Model Coverage for Multiple Instances of a Referenced Model 5-25
About Coverage for Model Blocks . 5-25
Record Coverage for Multiple Instances of a Referenced Model 5-25

Obtain Cumulative Coverage for Reusable Subsystems 5-33

Trace Coverage Results to Requirements . 5-37
Prerequisites for Tracing Requirements Links . 5-37

Assess Coverage Results from Requirements-Based Tests 5-40
Rationale for Scoping Coverage Results to Linked Requirements-Based

Tests . 5-40
Prerequisites for Scoping Coverage Results to Linked Requirements-Based

Tests . 5-40
Coverage Reporting for Aggregated Coverage Results Scoped to Linked

Requirements . 5-40
Example . 5-41

vi Contents

Trace Coverage Results to Associated Test Cases 5-42
Prerequisites for Tracing Associated Test Cases to Coverage Results . . . 5-42
Aggregate Unit-Level Coverage Data into Top-Level Model Coverage . . . 5-42

Model Coverage for MATLAB Functions . 5-46
Collecting Model Coverage for MATLAB Functions 5-46
Types of Model Coverage for MATLAB Functions 5-46

Model Coverage Reports for MATLAB Functions 5-49
Coverage Reports for MATLAB Functions in a MATLAB Function Block . 5-49
Coverage Reports for Simulink Design Verifier MATLAB Functions 5-54
Coverage Reports for MATLAB Functions in an External File 5-56

Coverage for MATLAB Function Blocks . 5-57

Coverage for Custom C/C++ Code in Simulink Models 5-72
Enable Code Coverage for Custom C/C++ code in MATLAB Function

Blocks, C Caller Blocks, and Stateflow Charts 5-72
Code Coverage for S-Functions . 5-72

View Coverage Results for Custom C/C++ Code in S-Function Blocks . . 5-74

Coverage for S-Functions . 5-78

Model Coverage for Stateflow Charts . 5-81
Specify Coverage Report Settings for Stateflow Charts 5-81
Model Coverage Reports for Stateflow Charts . 5-81
Code Coverage for C/C++ code in Stateflow Charts 5-89
Model Coverage for Stateflow State Transition Tables 5-89

Types of Coverage for Stateflow Charts . 5-91
Cyclomatic Complexity for Stateflow Charts . 5-91
Decision Coverage for Stateflow Charts . 5-91
Condition Coverage for Stateflow Charts . 5-94
MCDC Coverage for Stateflow Charts . 5-94
Relational Boundary Coverage for Stateflow Charts 5-95
Simulink Design Verifier Coverage for Stateflow Charts 5-95

Model Coverage Display for Stateflow Charts . 5-97
Display Model Coverage with Model Coloring . 5-97

Model Coverage for Stateflow Atomic Subcharts 5-100

Model Coverage for Stateflow Truth Tables . 5-102
Types of Coverage in Stateflow Truth Tables . 5-102
Analyze Coverage in Stateflow Truth Tables . 5-102

Model Coverage for Variant Blocks . 5-106
Update-Time and Compile-Time Variants . 5-106
Startup Variants . 5-108
Customizing the Coverage Report for Models that Contain Variants . . . 5-110

Collect Coverage for Multiple Simulations by Using Design Studies . . 5-112

vii

Results Review
6

Types of Coverage Reports . 6-2
Model Summary Report . 6-3
Model Reference Coverage Report . 6-4
External MATLAB File Coverage Report . 6-4
Subsystem Coverage Report . 6-8
Code Coverage Report . 6-9

Top-Level Model Coverage Report . 6-11
Analysis Information . 6-11
Aggregated Tests . 6-12
Coverage Summary . 6-13
Details . 6-14
Cyclomatic Complexity in the Model Coverage Report 6-22
Decisions Analyzed . 6-24
Conditions Analyzed . 6-25
MCDC Analysis . 6-25
Cumulative Coverage . 6-26
N-Dimensional Lookup Table . 6-28
Block Reduction . 6-32
Relational Boundary . 6-33
Saturate on Integer Overflow Analysis . 6-35
Signal Range Analysis . 6-36
Signal Size Coverage for Variable-Dimension Signals 6-37
Simulink Design Verifier Coverage . 6-38

Code Coverage Report . 6-40
Analysis Information . 6-40
Aggregated Tests . 6-42
Summary . 6-43
Details . 6-44
Cyclomatic Complexity . 6-47
Decisions Analyzed . 6-48
Conditions Analyzed . 6-50
MCDC Analysis . 6-50
Cumulative Coverage . 6-52
Relational Boundary . 6-54

Export Model Coverage Web View . 6-58

Filtering in Simulink Coverage
7

Coverage Filtering . 7-2
When to Use Coverage Filtering . 7-2
What Is Coverage Filtering? . 7-2

Coverage Filter Rules and Files . 7-4
What Is a Coverage Filter Rule? . 7-4

viii Contents

What Is a Coverage Filter File? . 7-4

Model Objects to Filter from Coverage . 7-5

Create, Edit, and View Coverage Filter Rules . 7-6
Create and Edit Coverage Filter Rules . 7-6
Save Coverage Filter to File . 7-8
Create New Coverage Filter File . 7-8
Load Coverage Filter File . 7-8
Remove Applied Coverage Filter . 7-9
Manage Applied filters by Using the Test Manager in Simulink Test 7-9
Update the Report with the Current Filter Settings 7-9
View Coverage Filter Rules in Your Model . 7-9

View Applied Filters in the Coverage Results Explorer 7-10

Creating and Using Coverage Filters . 7-11

Automating Model Coverage Tasks
8

Automating Model Coverage Tasks . 8-2
Collect Coverage Data Using a Script . 8-2
Differences between sim and the Run Button . 8-3
Collecting Coverage with Simulink Test . 8-3

Analyze Coverage Data Using A Script . 8-4

Command Line Verification Tutorial . 8-7

Extracting Detailed Information from Coverage Data 8-16

Perform Operations on Coverage Data . 8-24

Record Coverage in Parallel Simulations by Using Parsim 8-31

Filter Coverage Results Using a Script . 8-34

Component Verification
9

Component Verification . 9-2
Simulink Coverage Tools for Component Verification 9-2
Workflow for Component Verification . 9-2
Verify a Component Independently of the Container Model 9-4
Verify a Model Block in the Context of the Container Model 9-4

Fix Requirements-Based Testing Issues . 9-6

ix

Verification and Validation
10

Test Model Against Requirements and Report Results 10-2
Requirements – Test Traceability Overview . 10-2
Display the Requirements . 10-2
Link Requirements to Tests . 10-3
Run the Test . 10-4
Report the Results . 10-5

Analyze Models for Standards Compliance and Design Errors 10-7
Standards and Analysis Overview . 10-7
Check Model for Style Guideline Violations and Design Errors 10-7

Perform Functional Testing and Analyze Test Coverage 10-9
Incrementally Increase Test Coverage Using Test Case Generation 10-9

Analyze Code and Test Software-in-the-Loop . 10-12
Code Analysis and Testing Software-in-the-Loop Overview 10-12
Analyze Code for Defects, Metrics, and MISRA C:2012 10-12
Test Code Against Model Using Software-in-the-Loop Testing 10-17

x Contents

Model Coverage Definition

• “Model Coverage” on page 1-2
• “Types of Model Coverage” on page 1-4
• “Simulink Optimizations and Model Coverage” on page 1-11

1

Model Coverage

Model coverage helps you verify your model by analyzing the behavior of covered objects, states, and
transitions and measuring the extent to which a simulation exercises the potential simulation
pathways through each covered object in the model. You can collect model coverage for models by
enabling coverage on the model and then starting the simulation, or measure the percentage of
coverage objectives that a test case satisfies by creating test cases using the Test Manager in
Simulink® Test™. For a detailed list of the objects that you can measure model coverage for, see
“Model Objects That Receive Coverage” on page 2-2.

Model Coverage Overview
To enable coverage on your model, in the Modeling tab, click Model Settings. In the Configuration
Parameters Dialog Box, in the left pane, click Coverage, then select Enable coverage analysis.

You can analyze models for various coverage metrics, such as block execution coverage, decision
coverage, condition coverage, and modified condition/decision coverage. For a full list of the types of
coverage that model coverage performs, see “Types of Model Coverage” on page 1-4.

Simulink Coverage™ can only collect model coverage for a model when you simulate in normal mode.

If you have an Embedded Coder® license, you can also measure code coverage for code generated
from models in software-in-the-loop (SIL) mode or processor-in-the-loop (PIL) mode. For the types of
coverage that code coverage performs, see “Types of Code Coverage” on page 4-2. For an example
of how to enable code coverage, see “Code Coverage for Models in Software-in-the-Loop (SIL) Mode
and Processor-in-the-Loop (PIL) Mode” on page 4-6.

Types of Coverage Data
When you simulate your model with coverage enabled using the Run button, Simulink Coverage
opens the Coverage Details pane and displays a coverage report.

You can also manually generate a model coverage report that shows the results of the model coverage
analysis. The report contains a summary as well as coverage details for each object that you
analyzed, depending on the blocks that your model contains and the coverage metrics that you select.

In both cases, the type of coverage report displayed depends on what format your coverage data is in,
and the format of your coverage data depends on what your model contains.

Coverage Data

If you analyze one model that does not call external code files or contain model references, Simulink
Coverage saves coverage data in cvdata objects. When you generate a coverage report from a
cvdata object, you see the top-level model coverage report for your model. This report contains
details for each analyzed object in your model.

Coverage Data Group

If your model calls external code files or contains model references, Simulink Coverage returns the
coverage data in a cvdatagroup object which contains a cvdata object for each model or file. The
model summary coverage report links to a coverage report for each cvdata object contained in the
cvdatagroup object.

1 Model Coverage Definition

1-2

See Also
cv.cvdatagroup | cvdata

Related Examples
• “Types of Coverage Reports” on page 6-2
• “Types of Model Coverage” on page 1-4
• “Top-Level Model Coverage Report” on page 6-11
• “Model Objects That Receive Coverage” on page 2-2
• “Model Objects That Do Not Receive Coverage” on page 2-28

 Model Coverage

1-3

Types of Model Coverage

Simulink Coverage can perform several types of coverage analysis.

In this section...
“Execution Coverage (EC)” on page 1-4
“Decision Coverage (DC)” on page 1-4
“Condition Coverage (CC)” on page 1-4
“Modified Condition/Decision Coverage (MCDC)” on page 1-5
“Cyclomatic Complexity” on page 1-5
“Lookup Table Coverage” on page 1-6
“Signal Range Coverage” on page 1-6
“Signal Size Coverage” on page 1-7
“Objectives and Constraints Coverage” on page 1-7
“Saturate on Integer Overflow Coverage” on page 1-8
“Relational Boundary Coverage” on page 1-8

Execution Coverage (EC)
Execution coverage is the most basic form of coverage. For each item, execution coverage determines
whether the item is executed during simulation.

Decision Coverage (DC)
Decision coverage analyzes elements that represent decision points in a model, such as a Switch
block or Stateflow® states. For each item, decision coverage determines the percentage of the total
number of simulation paths through the item that the simulation traversed.

For an example of decision coverage data in a model coverage report, see “Decisions Analyzed” on
page 6-24.

Condition Coverage (CC)
Condition coverage analyzes blocks that output the logical combination of their inputs (for example,
the Logical Operator block) and Stateflow transitions. A test case achieves full coverage when it
causes each input to each instance of a logic block in the model and each condition on a transition to
be true at least once during the simulation, and false at least once during the simulation. Condition
coverage analysis reports whether the test case fully covered the block for each block in the model.

When you collect coverage for a model, you may not be able to achieve 100% condition coverage. For
example, if you specify to short-circuit logic blocks, by selecting Treat Simulink Logic blocks as
short-circuited in the Coverage pane in the Configuration Parameters, you might not be able to
achieve 100% condition coverage for that block. See “MCDC Analysis” on page 6-25 for more
information.

For an example of condition coverage data in a model coverage report, see “Conditions Analyzed” on
page 6-25.

1 Model Coverage Definition

1-4

Modified Condition/Decision Coverage (MCDC)
Modified condition/decision coverage analysis by the Simulink Coverage software extends the
decision and condition coverage capabilities. It analyzes blocks that output the logical combination of
their inputs and Stateflow transitions to determine the extent to which the test case tests the
independence of logical block inputs and transition conditions.

• A test case achieves full coverage for a block when a change in one input, independent of any
other inputs, causes a change in the block output.

• A test case achieves full coverage for a Stateflow transition when there is at least one time when a
change in the condition triggers the transition for each condition.

If your model contains blocks that define expressions that have different types of logical operators
and more than 12 conditions, the software cannot record MCDC coverage.

Because the Simulink Coverage MCDC coverage may not achieve full decision or condition coverage,
you can achieve 100% MCDC coverage without achieving 100% decision coverage.

Some Simulink objects support MCDC coverage, some objects support only condition coverage, and
some objects support only decision coverage. The table in “Model Objects That Receive Coverage” on
page 2-2 lists which objects receive which types of model coverage. For example, the
Combinatorial Logic block can receive decision coverage and condition coverage, but not MCDC
coverage.

To achieve 100% MCDC coverage for your model, as defined by the DO-178C/DO-331 standard, in the
Coverage pane of the Configuration Parameters, select “Modified Condition/Decision Coverage
(MCDC)” on page 1-5 as the Structural coverage level.

When you collect coverage for a model, you may not be able to achieve 100% MCDC coverage. For
example, if you specify to short-circuit logic blocks, you may not be able to achieve 100% MCDC
coverage for that block.

If you run the test cases independently and accumulate all the coverage results, you can determine if
your model adheres to the modified condition and decision coverage standard. For more information
about the DO-178C/DO-331 standard, see “Model Advisor Checks for DO-178C/DO-331 Industry
Standards” (Simulink Check).

For an example of MCDC coverage data in a model coverage report, see “MCDC Analysis” on page 6-
25. For an example of accumulated coverage results, see “Cumulative Coverage” on page 6-26.

Cyclomatic Complexity
Use this metric to calculate the cyclomatic complexity of the model. Cyclomatic complexity is a
measure of the structural complexity of a model. The complexity measure for the model can be
different than the generated code due to code features that this analysis does not consider, such as
consolidated logic and error checks.

To compute the cyclomatic complexity of an object (such as a block, chart, or state), model coverage
uses the following formula:

c = ∑
1

N
(on− 1)

 Types of Model Coverage

1-5

N is the number of decision points that the object represents and on is the number of outcomes for
the nth decision point. The calculation considers a vectorized operation or a Multiport switch block as
a single decision point. The tool adds 1 to the complexity number for atomic subsystems and
Stateflow charts.

The results provide local and aggregated cyclomatic complexity for the:

• Model
• Subsystems
• Charts
• MATLAB® Functions

Local complexity is the cyclomatic complexity for objects at their hierarchical level. Aggregated
cyclomatic complexity is the cyclomatic complexity of an object and its descendants.

Cyclomatic complexity:

• Does not run on library models.
• Analyzes content in masked subsystems.
• Does not analyze inactive variants.
• If specified, analyzes the content of library-linked blocks or referenced models.
• Does not analyze referenced models in accelerated mode.

For an example of cyclomatic complexity data in a model coverage report, see “Cyclomatic
Complexity in the Model Coverage Report” on page 6-22. For more information about cyclomatic
complexity for code, see “Cyclomatic Complexity” on page 4-4.

Lookup Table Coverage
Lookup table coverage (LUT) examines blocks, such as the 1-D Lookup Table block, that output
information from inputs in a table of inputs and outputs, interpolating between or extrapolating from
table entries. Lookup table coverage records the frequency that table lookups use each interpolation
interval. A test case achieves full coverage when it executes each interpolation and extrapolation
interval at least once. For each lookup table block in the model, the coverage report displays a
colored map of the lookup table, indicating each interpolation. If the total number of breakpoints of
an n-D Lookup Table block exceeds 1,500,000, the software cannot record coverage for that block.

For an example of lookup table coverage data in a model coverage report, see “N-Dimensional
Lookup Table” on page 6-28.

Note Configure lookup table coverage only at the start of a simulation. If you tune a parameter that
affects lookup table coverage at run time, the coverage settings for the affected block are not
updated.

Signal Range Coverage
Signal range coverage records the minimum and maximum signal values at each block in the model,
as measured during simulation. Only blocks with output signals receive signal range coverage.

1 Model Coverage Definition

1-6

The software does not record signal range coverage for control signals, signals used by one block to
initiate execution of another block. See “Control Signals”.

If the total number of signals in your model exceeds 65535, or your model contains a signal whose
width exceeds 65535, the software cannot record signal range coverage.

For an example of signal range coverage data in a model coverage report, see “Signal Range
Analysis” on page 6-36.

Note When you create cumulative coverage for reusable subsystems or Stateflow constructs with
single range coverage, the cumulative coverage has the largest possible range of signal values. For
more information, see “Obtain Cumulative Coverage for Reusable Subsystems” on page 5-33.

Signal Size Coverage
Signal size coverage records the minimum, maximum, and allocated size for all variable-size signals
in a model. Only blocks with variable-size output signals are included in the report.

If the total number of signals in your model exceeds 65535, or your model contains a signal whose
width exceeds 65535, the software cannot record signal size coverage.

For an example of signal size coverage data in a model coverage report, see “Signal Size Coverage
for Variable-Dimension Signals” on page 6-37.

For more information about variable-size signals, see “Variable-Size Signal Basics”.

Objectives and Constraints Coverage
The Simulink Coverage software collects model coverage data for the following Simulink Design
Verifier™ blocks and MATLAB for code generation functions:

Simulink Design Verifier blocks MATLAB for code generation functions
Test Condition sldv.condition
Test Objective sldv.test
Proof Assumption sldv.assume
Proof Objective sldv.prove

If you do not have a Simulink Design Verifier license, you can collect model coverage for a model that
contains these blocks or functions, but you cannot analyze the model using the Simulink Design
Verifier software.

By adding one or more Simulink Design Verifier blocks or functions into your model, you can:

• Check the results of a Simulink Design Verifier analysis, run generated test cases, and use the
blocks to observe the results.

• Define model requirements using the Test Objective block and verify the results with model
coverage data that the software collected during simulation.

• Analyze the model, create a test harness, and simulate the harness with the Test Objective block
to collect model coverage data.

 Types of Model Coverage

1-7

• Analyze the model and use the Proof Assumption block to verify any counterexamples that the
Simulink Design Verifier identifies.

If you specify to collect Simulink Design Verifier coverage:

• The software collects coverage for the Simulink Design Verifier blocks and functions.
• The software checks the data type of the signal that links to each Simulink Design Verifier block. If

the signal data type is fixed point, the block parameter must also be fixed point. If the signal data
type is not fixed point, the software tries to convert the block parameter data type. If the software
cannot convert the block parameter data type, the software reports an error and you must
explicitly assign the block parameter data type to match the signal.

• If your model contains a Verification Subsystem block, the software only records coverage for
Simulink Design Verifier blocks in the Verification Subsystem block; it does not record coverage
for any other blocks in the Verification Subsystem.

If you do not specify to collect Simulink Design Verifier coverage, the software does not check the
data types for any Simulink Design Verifier blocks and functions in your model and does not collect
coverage.

For an example of coverage data for Simulink Design Verifier blocks or functions in a model coverage
report, see “Simulink Design Verifier Coverage” on page 6-38.

Saturate on Integer Overflow Coverage
Saturate on integer overflow coverage examines blocks, such as the Abs block, with the Saturate on
integer overflow parameter selected. Only blocks with this parameter selected receive saturate on
integer overflow coverage.

Saturate on integer overflow coverage records the number of times the block saturates on integer
overflow.

A test case achieves full coverage when the blocks saturate on integer overflow at least once and
does not saturate at least once.

For an example of saturate on integer overflow coverage data in a model coverage report, see
“Saturate on Integer Overflow Analysis” on page 6-35.

Relational Boundary Coverage
Relational boundary coverage examines blocks, Stateflow charts, and MATLAB function blocks that
have an explicit or implicit relational operation.

• Blocks such as Relational Operator and If have an explicit relational operation.
• Blocks such as Abs and Saturation have an implicit relational operation.

For these model objects, the metric records whether a simulation tests the relational operation with:

• Equal operand values.

This part of relational boundary coverage applies only if both operands are integers or fixed-point
numbers.

• Operand values that differ by a certain tolerance.

1 Model Coverage Definition

1-8

This part of relational boundary coverage applies to all operands. For integer and fixed-point
operands, the tolerance is fixed. For floating-point operands, you can either use a predefined
tolerance or you can specify your own tolerance.

The tolerance value depends on the data type of both the operands. If both operands have the same
type, the tolerance follows the following rules:

Data Type of Operand Tolerance
Floating point, such as single or double max(absTol, relTol* max(|lhs|,|rhs|))

• absTol is an absolute tolerance value you
specify. Default is 1e-05.

• relTol is a relative tolerance value you
specify. Default is 0.01.

• lhs is the left operand and rhs the right
operand.

• max(x,y) returns x or y, whichever is
greater.

Fixed point Value corresponding to least significant bit. For
more information, see “Precision” (Fixed-Point
Designer). To find the precision value, use the
lsb (Fixed-Point Designer) function.

Integer 1
Boolean N/A
Enum N/A

If the two operands have different types, the tolerance follows the rules for the stricter type. If one of
the operands is boolean, the tolerance follows the rules for the other operand. The strictness
decreases in this order:

1 Floating point
2 Fixed point
3 Integer

If both operands are fixed point but have different precision, the smaller value of precision is used as
tolerance.

For relational boundaries with floating point data types, the coverage report uses standard interval
notation where square brackets, [], indicate inclusion and round brackets, (), indicate exclusion.
For example, a table that shows [-tol..0) represents the statement value >= -tol && value
< 0.

You specify the value of absolute and relative tolerances for relational boundary coverage of floating
point inputs when you select this metric in the Coverage metrics section in the “Coverage Pane” on
page 3-2 of the Configuration Parameters dialog box.

For more information on:

• How this coverage metric appears in reports, see “Relational Boundary” on page 6-33.
• Which model objects receive this coverage, see the table in “Model Objects That Receive

Coverage” on page 2-2.

 Types of Model Coverage

1-9

• How to obtain coverage results from the MATLAB command-line, see “Collect Relational Boundary
Coverage for Supported Block in Model”.

1 Model Coverage Definition

1-10

Simulink Optimizations and Model Coverage
In the Configuration Parameters dialog box, there are three Simulink optimization parameters that
can affect your model coverage data:

Inlined Parameters
To transform tunable model parameters into constant values for code generation, in the Configuration
Parameters dialog box, on the Math and Data Types pane, set Default parameter behavior to
Inlined.

When the parameters are transformed into constants, Simulink may eliminate certain decisions in
your model. You cannot achieve coverage for eliminated decision, so the coverage report displays 0/0
for those decisions.

Block Reduction
To achieve faster execution during model simulation and in generated code, in the Configuration
Parameters dialog box, select the Block reduction parameter. The Simulink software collapses
certain groups of blocks into a single, more efficient block, or removes them entirely.

One of the model coverage options, Force block reduction off, allows you to ignore the Block
reduction parameter when collecting model coverage.

If you do not select the Block reduction parameter, or if you select Force block reduction off, the
Simulink Coverage software provides coverage data for every block in the model that collects
coverage.

If you select the Block reduction parameter and do not set Force block reduction off, the
coverage report lists the reduced blocks that would have collected coverage.

Conditional Input Branch Execution
The Conditional input branch execution parameter can cause lower than expected Simulink
Coverage results.

 Simulink Optimizations and Model Coverage

1-11

Case 1: Upstream Switch Block Completely Optimized Out

A Constant block set to false connected to the control input on C_Switch2 causes the true case of
C_Switch2 to not occur. Conditional input branch execution optimizes C_Switch1 out as a result.
Simulink Coverage reports 0% coverage on C_Switch1.

Because the C_Switch1 block is dead logic, the coverage report generates a Blocks Eliminated from
Coverage Analysis section.

Case 2: Upstream Switch Block Partially Optimized Out

A Step block converted to the boolean data type outputs false and true before and after the Step
time, respectively.

1 Model Coverage Definition

1-12

Disabling Conditional input branch execution provides full coverage. Enabling Conditional input
branch execution provides partial coverage on A_Switch1 because A_Switch1 does not see a false
case at the same time that A_Switch2 sees a true case. In other words, either both Switch blocks are
true, or both are false. The false case of A_Switch1 does not affect the model. The coverage report
correctly reports 50% coverage on A_Switch1.

Address Incomplete Coverage

You can address incomplete coverage in models where the Conditional input branch execution
parameter is selected by:

• Revising the model design. Incomplete coverage due to Conditional input branch execution
could indicate a model design flaw.

• Justifying the missing coverage if the inaccessible logic in the model is intentional.
• Providing a more robust test case that can access all of the switch decisions.
• Clearing Conditional input branch execution. This eliminates the issue of incomplete Switch

coverage, but does not address the inaccessible logic.

For usage details, see “Conditional input branch execution”.

Limitations

Conditional input branch execution does not apply to Stateflow charts.

 Simulink Optimizations and Model Coverage

1-13

Model Objects That Receive Model
Coverage

2

Model Objects That Receive Coverage

Certain Simulink objects can receive any type of model coverage. Other Simulink objects can receive
only certain types of coverage, as the following table shows. Click a link in the first column to get
more detailed information about coverage for specific model objects.

All Simulink objects can receive Execution coverage, except for virtual blocks and:

• Merge blocks
• Scope blocks
• Width blocks
• Display blocks
• To Workspace blocks

For a list of virtual blocks, see “Nonvirtual and Virtual Blocks”.

For a full list of Simulink objects that do not receive coverage, see “Model Objects That Do Not
Receive Coverage” on page 2-28.

For Stateflow states, events, and state temporal logic decisions, model coverage provides decision
coverage. For Stateflow transitions, model coverage provides decision, condition, and MCDC
coverage. Model coverage provides condition and MCDC coverage for logical expressions in
assignment statements in states and transitions. For more information, see “Model Coverage for
Stateflow Charts” on page 5-81.

Model Object Decision Condition MCDC Lookup
Table

Simulink
Design
Verifier

Saturate
on Integer
Overflow

Relational
Boundary

“Abs” on page 2-6
“Bias” on page 2-
7

“Combinatorial
Logic” on page 2-
7

“Compare to
Constant” on page
2-7

“Compare to Zero”
on page 2-8

“Data Type
Conversion” on
page 2-8

“Dead Zone” on
page 2-8

“Delay and
Resettable Delay”
on page 2-9

2 Model Objects That Receive Model Coverage

2-2

Model Object Decision Condition MCDC Lookup
Table

Simulink
Design
Verifier

Saturate
on Integer
Overflow

Relational
Boundary

“Direct Lookup
Table (n-D)” on
page 2-9

“Discrete Filter” on
page 2-9

“Discrete FIR
Filter” on page 2-
10

“Discrete-Time
Integrator” on page
2-10 (when
saturation limits are
enabled or reset)

“Discrete Transfer
Fcn” on page 2-11

“Dot Product” on
page 2-11

“Enabled
Subsystem” on page
2-11

“Enabled and
Triggered
Subsystem” on page
2-12

“Fcn” on page 2-
12

“For Iterator, For
Iterator Subsystem”
on page 2-13

“Gain” on page 2-
13

“If, If Action
Subsystem” on page
2-13

“Index Vector” on
page 2-14

“Interpolation
Using Prelookup”
on page 2-14

“Library-Linked
Objects” on page 2-
14

 Model Objects That Receive Coverage

2-3

Model Object Decision Condition MCDC Lookup
Table

Simulink
Design
Verifier

Saturate
on Integer
Overflow

Relational
Boundary

“Logical Operator”
on page 2-15

“1-D Lookup Table”
on page 2-15

“2-D Lookup Table”
on page 2-16

“n-D Lookup Table”
on page 2-16

“Math Function” on
page 2-16

“MATLAB Function”
on page 2-17

“MATLAB System”
on page 2-17

“Message Send” on
page 2-17

“MinMax” on page
2-17

“Model” on page 2-
17

See also “Triggered
Models” on page 2-
25.
“Multiport Switch”
on page 2-18

“Observer Model”
on page 2-18
“PID Controller, PID
Controller (2 DOF)”
on page 2-19

“Product” on page
2-19

“Proof Assumption”
on page 2-19

“Proof Objective”
on page 2-19

“Rate Limiter” on
page 2-19

(Relative to
slew rates)

2 Model Objects That Receive Model Coverage

2-4

Model Object Decision Condition MCDC Lookup
Table

Simulink
Design
Verifier

Saturate
on Integer
Overflow

Relational
Boundary

“Relational
Operator” on page
2-20

“Relay” on page 2-
20

“Requirements
Table” on page 2-
21

“C/C++ S-
Function” on page
2-21

“Saturation” on
page 2-22

“Saturation
Dynamic” on page
2-23

“Sign” on page 2-
23

“Simulink Design
Verifier Functions in
MATLAB Function
Blocks” on page 2-
23

Stateflow charts on
page 5-81

Stateflow state
transition tables on
page 5-89

“Sqrt, Signed Sqrt,
Reciprocal Sqrt” on
page 2-23

“Sum, Add,
Subtract, Sum of
Elements” on page
2-23

“Switch” on page 2-
24

“SwitchCase,
SwitchCase Action
Subsystem” on page
2-24

“Test Condition” on
page 2-24

 Model Objects That Receive Coverage

2-5

Model Object Decision Condition MCDC Lookup
Table

Simulink
Design
Verifier

Saturate
on Integer
Overflow

Relational
Boundary

“Test Objective” on
page 2-24

“Triggered Models”
on page 2-25

“Triggered
Subsystem” on page
2-25

“Trigonometric
Function” on page
2-26

“Truth Table” on
page 2-26

“Unary Minus” on
page 2-26

Variant Subsystem,
Variant Model,
Variant Source,
Variant Sink on
page 5-106

“Weighted Sample
Time Math” on page
2-26

“While Iterator,
While Iterator
Subsystem” on page
2-27

Abs
The Abs block receives decision coverage and relational boundary coverage. Decision coverage is
based on:

• Input to the block being less than zero.
• Data type of the input signal.

For input to the block being less than zero, the decision coverage measures:

• The number of time steps that the block input is less than zero, indicating a true decision.
• The number of time steps the block input is not less than zero, indicating a false decision.

If you select the Saturate on integer overflow coverage metric, the Abs block receives saturate on
integer overflow coverage. For more information, see “Saturate on Integer Overflow Coverage” on
page 1-8.

2 Model Objects That Receive Model Coverage

2-6

If the input data type to the Abs block is an unsigned integer, Simulink Coverage does not report
decision coverage for the block. Simulink sets the block output equal to the block input without
making a decision.

The Abs block contains an implicit comparison of the input with zero. Therefore, if you select the
Relational Boundary coverage metric, the Abs block receives relational boundary coverage. For
more information, see “Relational Boundary Coverage” on page 1-8.

Bias
If you select the Saturate on integer overflow coverage metric, the Bias block receives saturate on
integer overflow coverage. For more information, see “Saturate on Integer Overflow Coverage” on
page 1-8.

Combinatorial Logic
The Combinatorial Logic block receives decision and condition coverage. Decision coverage is based
on achieving each output row of the truth table. The decision coverage measures the number of time
steps that each output row of the truth table is set to the block output.

The condition coverage measures the number of time steps that each input is false (equal to zero) and
the number of times each input is true (not equal to zero). If the Combinatorial Logic block has a
single input element, the Simulink Coverage software reports only decision coverage, because
decision and condition coverage are equivalent.

If all truth table values are set to the block output for at least one time step, decision coverage is
100%. Otherwise, the software reports the coverage as the number of truth table values output
during at least one time step, divided by the total number of truth table values. Because this block
always has at least one value in the truth table as output, the minimum coverage reported is one
divided by the total number of truth table values.

If all block inputs are false for at least one time step and true for at least one time step, condition
coverage is 100%. Otherwise, the software reports the coverage as achieving a false value at each
input for at least one time step, plus achieving a true value for at least one time step, divided by two
raised to the power of the total number of inputs (i.e., 2^number_of_inputs). The minimum coverage
reported is the total number of inputs divided by two raised to the power of the total number of
inputs.

Compare to Constant
The Compare to Constant block receives condition coverage.

Condition coverage measures:

• the number of times that the comparison between the input and the specified constant was true.
• the number of times that the comparison between the input and the specified constant was false.

The Compare to Constant block contains a comparison of the input with a constant. Therefore, if you
select the Relational Boundary coverage metric, the Compare to Constant block receives relational
boundary coverage. For more information, see “Relational Boundary Coverage” on page 1-8.

 Model Objects That Receive Coverage

2-7

Compare to Zero
The Compare to Zero block receives condition coverage.

Condition coverage measures:

• the number of times that the comparison between the input and zero was true.
• the number of times that the comparison between the input and zero was false.

The Compare to Zero block contains a comparison of the input with zero. Therefore, if you select the
Relational Boundary coverage metric, the Compare to Zero block receives relational boundary
coverage. For more information, see “Relational Boundary Coverage” on page 1-8.

Data Type Conversion
If you select the Saturate on integer overflow coverage metric, the Data Type Conversion block
receives saturate on integer overflow coverage. For more information, see “Saturate on Integer
Overflow Coverage” on page 1-8.

Dead Zone
The Dead Zone block receives decision coverage. The Simulink Coverage software reports decision
coverage for these parameters:

• Start of dead zone
• End of dead zone

The Start of dead zone parameter specifies the lower limit of the dead zone. For the Start of dead
zone parameter, decision coverage measures:

• The number of time steps that the block input is greater than or equal to the lower limit,
indicating a true decision.

• The number of time steps that the block input is less than the lower limit, indicating a false
decision.

The End of dead zone parameter specifies the upper limit of the dead zone. For the End of dead
zone, decision coverage measures:

• The number of time steps that the block input is greater than the upper limit, indicating a true
decision.

• The number of time steps that the block input is less than or equal to the upper limit, indicating a
false decision.

When the upper limit is true, the software does not measure Start of dead zone coverage for that
time step. Therefore, the total number of Start of dead zone decisions equals the number of time
steps that the End of dead zone is false.

If you select the Saturate on integer overflow coverage metric, the Dead Zone block receives
saturate on integer overflow coverage. For more information, see “Saturate on Integer Overflow
Coverage” on page 1-8.

The Dead Zone block contains an implicit comparison of the input with an upper and lower limit
value. Therefore, if you select the Relational Boundary coverage metric, the Dead Zone block

2 Model Objects That Receive Model Coverage

2-8

receives relational boundary coverage. For more information, see “Relational Boundary Coverage” on
page 1-8.

Delay and Resettable Delay
The Delay and Resettable Delay blocks receive decision coverage if you set the External reset block
parameter to any option except for None, or if you select the Show enable port block parameter.

For the External reset block parameter, decision coverage measures a true outcome for time steps
where the block resets and a false outcome for time steps where the block does not reset. To receive
100% decision coverage, the block must reset for at least one time step and not reset for at least one
time step.

For the Show enable port block parameter, decision coverage measures a true outcome for time
steps where the block is enabled and a false outcome for time steps where the block is not enabled.
To receive 100% decision coverage, the block must be enabled for at least one time step and not
enabled for at least one time step.

Direct Lookup Table (n-D)
The Direct Lookup Table (n-D) block receives lookup table coverage. For an n-dimensional lookup
table, the number of output break points is the product of all the number of break points for each
table dimension.

Lookup table coverage measures:

• The number of times during simulation that each combination of dimension input values is
between each of the break points.

• The number of times during simulation that each combination of dimension input values is below
the lowest break point and above the highest break point for each table dimension.

The total number of coverage points for an n-dimensional lookup table is the product of the number of
break points in each table dimension plus one. In the coverage report, an increasing white-to-green
color scale, with six evenly spaced data ranges starting with zero, indicates the number of time steps
that the software measures each interpolation or extrapolation point.

The software determines a percentage of total coverage by measuring the total interpolation and
extrapolation points that achieve a measurement of at least one time step during simulation between
a break point or beyond the end points.

Discrete Filter
The Discrete Filter block receives decision coverage if you set the External reset block parameter to
any option except for None. Decision coverage measures a true outcome for time steps where the
block resets and a false outcome for time steps where the block does not reset. To receive 100%
decision coverage, the block must reset for at least one time step and not reset for at least one time
step.

If you select the Saturate on integer overflow coverage parameter, the Discrete Filter block
receives saturate on integer overflow coverage. For more information, see “Saturate on Integer
Overflow Coverage” on page 1-8.

 Model Objects That Receive Coverage

2-9

Discrete FIR Filter
The Discrete FIR Filter block receives decision coverage if you set the External reset block
parameter to any option except for None, or if you select the Show enable port block parameter.

For the External reset block parameter, decision coverage measures a true outcome for time steps
where the block resets and a false outcome for time steps where the block does not reset. To receive
100% decision coverage, the block must reset for at least one time step and not reset for at least one
time step.

For the Show enable port block parameter, decision coverage measures a true outcome for time
steps where the block is enabled and a false outcome for time steps where the block is not enabled.
To receive 100% decision coverage, the block must be enabled for at least one time step and not
enabled for at least one time step.

If you select the Saturate on integer overflow coverage metric, the Discrete FIR Filter block
receives saturate on integer overflow coverage. For more information, see “Saturate on Integer
Overflow Coverage” on page 1-8.

Discrete-Time Integrator
The Discrete-Time Integrator block receives decision coverage. Simulink Coverage reports decision
coverage for these parameters:

• External reset
• Limit output

If you set External reset to none, Simulink Coverage does not report decision coverage for the reset
decision. Otherwise, the decision coverage measures:

• The number of time steps that the block output is reset, indicating a true decision.
• The number of time steps that the block output is not reset, indicating a false decision.

If you do not select Limit output, the software does not report decision coverage for that decision.
Otherwise, the software reports decision coverage for the Lower saturation limit and the Upper
saturation limit.

For the Upper saturation limit, decision coverage measures:

• The number of time steps that the integration result is greater than or equal to the upper limit,
indicating a true decision.

• The number of time steps that the integration result is less than the upper limit, indicating a false
decision.

For the Lower saturation limit, decision coverage measures

• The number of time steps that the integration result is less than or equal to the lower limit,
indicating a true decision.

• The number of time steps that the integration result is greater than the lower limit, indicating a
false decision.

2 Model Objects That Receive Model Coverage

2-10

For a time step when the upper limit is true, the software does not measure Lower saturation limit
coverage. Therefore, the total number of lower limit decisions equals the number of time steps that
the upper limit is false.

If you select the Saturate on integer overflow coverage metric, the Discrete-Time Integrator block
receives saturate on integer overflow coverage. For more information, see “Saturate on Integer
Overflow Coverage” on page 1-8.

Discrete Transfer Fcn
The Discrete Transfer Fcn block receives decision coverage if you set the External reset block
parameter to any option except for None. Decision coverage measures a true outcome for time steps
where the block resets and a false outcome for time steps where the block does not reset. To receive
100% decision coverage, the block must reset for at least one time step and not reset for at least one
time step.

If you select the Saturate on integer overflow coverage parameter, the Discrete Transfer Fcn block
receives saturate on integer overflow coverage. For more information, see “Saturate on Integer
Overflow Coverage” on page 1-8.

Dot Product
If you select the Saturate on integer overflow coverage metric, the Dot Product block receives
saturate on integer overflow coverage. For more information, see “Saturate on Integer Overflow
Coverage” on page 1-8.

Enabled Subsystem
The Enabled Subsystem block receives decision, condition, and MCDC coverage.

Decision coverage measures:

• The number of time steps that the block is enabled, indicating a true decision.
• The number of time steps that the block is disabled, indicating a false decision.

If at least one time step is true and at least one time step is false, decision coverage is 100%. If no
time steps are true, or if no time steps are false, decision coverage is 50%.

The Simulink Coverage software measures condition coverage for the enable input only if the enable
input is a vector. For the enable input, condition coverage measures the number of time steps each
element of the enable input is true and the number of time steps each element of the enable input is
false. The software reports condition coverage based on the total number of possible conditions and
how many are true for at least one time step and how many are false for at least one time step.

The software measures MCDC coverage for the enable input only if the enable input is a vector.
Because the enable of the subsystem is an OR of the vector inputs, MCDC coverage is 100% if, during
at least one time step, each vector enable input is exclusively true and if, during at least one time
step, all vector enable inputs are false. For MCDC coverage measurement, the software treats each
element of the vector as a separate condition.

 Model Objects That Receive Coverage

2-11

Enabled and Triggered Subsystem
The Enabled and Triggered Subsystem block receives decision, condition, and MCDC coverage.
Decision coverage measures:

• The number of time steps that a trigger edge occurs while the block is enabled, indicating a true
decision.

• The number of time steps that a trigger edge does not occur while the block is enabled, or the
block is disabled, indicating a false decision.

If at least one time step is true and at least one time step is false, decision coverage is 100%. If no
time steps are true, or if no time steps are false, decision coverage is 50%.

The software measures condition coverage for the enable input and for the trigger input separately:

• For the enable input, condition coverage measures the number of time steps the enable input is
true and the number of time steps the enable input is false.

• For the trigger input, condition coverage measures the number of time steps the trigger edge
occurs, indicating true, and the number of time steps the trigger edge does not occur, indicating
false.

The software reports condition coverage based on the total number of possible conditions and how
many conditions are true for at least one time step and how many are false for at least one time step.
The software treats each element of a vector as a separate condition coverage measurement.

The software measures MCDC coverage for the enable input and for the trigger input in combination.
Because the enable input of the subsystem is an AND of these two inputs, MCDC coverage is 100% if
all of the following occur:

• During at least one time step, both inputs are true.
• During at least one time step, the enable input is true and the trigger edge is false.
• During one time step, the enable input is false and the trigger edge is true.

The software treats each vector element as a separate MCDC coverage measurement. It measures
each trigger edge element against each enable input element. However, if the number of elements in
both the trigger and enable inputs exceeds 12, the software does not report MCDC coverage.

Fcn
The Fcn block receives condition and MCDC coverage. The Simulink Coverage software reports
condition or MCDC coverage for Fcn blocks only if the top-level operator is Boolean (&&, ||, or !).

Condition coverage is based on input values or arithmetic expressions that are inputs to Boolean
operators in the block. The condition coverage measures:

• The number of time steps that each input to a Boolean operator is true (not equal to zero).
• The number of time steps that each input to a Boolean operator is false (equal to zero).

If all Boolean operator inputs are false for at least one time step and true for at least one time step,
condition coverage is 100%. Otherwise, the software reports condition coverage based on the total
number of possible conditions and how many are true for at least one time step and how many are
false for at least one time step.

2 Model Objects That Receive Model Coverage

2-12

The software measures MCDC coverage for Boolean expressions within the Fcn block. If, during at
least one time step, each condition independently sets the output of the expression to true and if,
during at least one time step, each condition independently sets the output of the expression to false,
MCDC coverage is 100%. Otherwise, the software reports MCDC coverage based on the total number
of possible conditions and how many times each condition independently sets the output to true
during at least one time step and how many conditions independently set the output to false during at
least one time step.

If the Fcn block contains a relational operation and you select the Relational Boundary coverage
metric, the Fcn block receives relational boundary coverage. For more information, see “Relational
Boundary Coverage” on page 1-8.

For Iterator, For Iterator Subsystem
The For Iterator block and For Iterator Subsystem receive decision coverage. The Simulink Coverage
software measures decision coverage for the loop condition value, which is determined by one of the
following:

• The iteration value being at or below the iteration limit, indicated as true.
• The iteration value being above the iteration limit, indicated as false.

The software reports the total number of times that each loop condition evaluates to true and to false.
If the loop condition evaluates to true at least once and false at least once, decision coverage is 100%.
If no loop conditions are true, or if no loop conditions are false, decision coverage is 50%.

Gain
If you select the Saturate on integer overflow coverage metric, the Gain block receives saturate on
integer overflow coverage. For more information, see “Saturate on Integer Overflow Coverage” on
page 1-8.

If, If Action Subsystem
The If block that causes an If Action Subsystem to execute receives condition, decision, and MCDC
coverage:

• The software measures decision coverage for the if condition and all elseif conditions defined
in the If block.

• If the if condition or any of the elseif conditions contains a logical expression with multiple
conditions, such as u1 & u2 & u3, the software also measures condition and MCDC coverage for
each condition in the expression, u1, u2, and u3 in the preceding example.

The software does not directly measure the else condition. When there are no elseif conditions,
the else condition is the direct complement of the if condition, or the else condition is the direct
complement of the last elseif condition.

The software reports the total number of time steps that each if and elseif condition evaluates to
true and to false. If the if or elseif condition evaluates to true at least once, and evaluates to false
at least once, decision coverage is 100%. If no if or elseif conditions are true, or if no if or
elseif conditions are false, decision coverage is 50%. If the previous if or elseif condition never
evaluates as false, an elseif condition can have 0% decision coverage.

 Model Objects That Receive Coverage

2-13

The If block contains a comparison between its inputs. Therefore, if you select the Relational
Boundary coverage metric, the If block receives relational boundary coverage. For more information,
see “Relational Boundary Coverage” on page 1-8.

Index Vector
The Index Vector block receives decision coverage based on passing each element of the vector signal
input to the output of the block.

If each vector index is passed to the block output for at least one time step, decision coverage is
100%. Otherwise, Simulink Coverage reports coverage as the percentage of the total number of
vector indices in the input signal that passed through to the output.

If you select the Saturate on integer overflow coverage metric, the Index Vector block receives
saturate on integer overflow coverage. For more information, see “Saturate on Integer Overflow
Coverage” on page 1-8.

Interpolation Using Prelookup
The Interpolation Using Prelookup block receives lookup table coverage. For an n-D lookup table, the
number of output break points equals the product of all the number of break points for each table
dimension. The lookup table coverage measures:

• The number of times during simulation that each combination of dimension input values is
between each of the break points.

• The number of times during simulation that each combination of dimension input values is below
the lowest break point and above the highest break point for each table dimension.

The total number of coverage points for an n-dimensional lookup table is the product of the number of
break points in each table dimension plus one. In the coverage report, an increasing white-to-green
color scale, with six evenly spaced data ranges starting with zero, indicates the number of time steps
that the software measures each interpolation or extrapolation point.

The software determines a percentage of total coverage by measuring the total interpolation and
extrapolation points that achieve a measurement of at least one time step during simulation between
a break point or beyond the end points.

If you select the Saturate on integer overflow, the Interpolation Using Prelookup block receives
saturate on integer overflow coverage. For more information, see “Saturate on Integer Overflow
Coverage” on page 1-8. The software treats each element of a vector or matrix as a separate
coverage measurement.

Library-Linked Objects
Simulink blocks and Stateflow charts that are linked to library objects receive the same coverage that
they would receive if they were not linked to library objects. The Simulink Coverage software records
coverage individually for each library object in the model. If your model contains multiple instances of
the same library object, each instance receives its own coverage data.

2 Model Objects That Receive Model Coverage

2-14

Logical Operator
The Logical Operator block receives condition and MCDC coverage. The Simulink Coverage measures
condition coverage for each input to the block. The condition coverage measures:

• The number of time steps that each input is true (not equal to zero).
• The number of time steps that each input is false (equal to zero).

If all block inputs are false for at least one time step and true for at least one time step, the condition
coverage is 100%. Otherwise, the condition coverage is based on the total number of possible
conditions and how many are true at least one time step and how many are false at least one time
step.

Simulink Coverage measures MCDC coverage for all inputs to the block. If, during at least one time
step, each condition independently sets the output of the block to true and if, during at least one time
step, each condition independently sets the output of the block to false, MCDC coverage is 100%.
Otherwise, Simulink Coverage reports the MCDC coverage based on the total number of possible
conditions and how many times each one of them independently set the output to true for at least one
time step and how many independently set the output to false for at least one time step.

For a Logical Operator block to receive MCDC as part of a logic cascade, all of the following
conditions must be met:

• Block input and output signals are all scalar
• Logic block operation is not XOR/NXOR
• Logic block has more than one input signal (unless its operation is NOT)

For more information about logical cascades, see “Logical Operator Cascade Patterns” on page 5-9.

1-D Lookup Table
The 1-D Lookup Table block receives lookup table coverage; for a one-dimensional lookup table, the
number of input and output break points is equal. Lookup table coverage measures:

• The number of times during simulation that the input and output values are between each of the
break points.

• The number of times during simulation that the input and output values are below the lowest
break point and above the highest break point.

The total number of coverage points for a one-dimensional lookup table is the number of break points
in the table plus one. In the coverage report, an increasing white-to-green color scale, with six evenly
spaced data ranges starting with zero, indicates the number of time steps that the software measures
each interpolation or extrapolation point.

The software determines a percentage of total coverage by measuring the total interpolation and
extrapolation points that achieve a measurement of at least one time step during simulation between
a break point or beyond the end points.

If you select the Saturate on integer overflow coverage metric, the 1-D Lookup Table block
receives saturate on integer overflow coverage. For more information, see “Saturate on Integer
Overflow Coverage” on page 1-8. The software treats each element of a vector or matrix as a separate
coverage measurement.

 Model Objects That Receive Coverage

2-15

2-D Lookup Table
The 2-D Lookup Table block receives lookup table coverage. For a two-dimensional lookup table, the
number of output break points equals the number of row break points multiplied by the number of
column inputs. Lookup table coverage measures:

• The number of times during simulation that each combination of row input and column input
values is between each of the break points.

• The number of times during simulation that each combination of row input and column input
values is below the lowest break point and above the highest break point for each row and
column.

The total number of coverage points for a two-dimensional lookup table is the number of row break
points in the table plus one, multiplied by the number of column break points in the table plus one. In
the coverage report, an increasing white-to-green color scale, with six evenly spaced data ranges
starting with zero, indicates the number of time steps that the software measures each interpolation
or extrapolation point.

If you select the Saturate on integer overflow coverage metric, the 2-D Lookup Table block
receives saturate on integer overflow coverage. For more information, see “Saturate on Integer
Overflow Coverage” on page 1-8. The software treats each element of a vector or matrix as a separate
coverage measurement.

n-D Lookup Table
The n-D Lookup Table block receives lookup table coverage. For an n-dimensional lookup table, the
number of output break points equals the product of all the number of break points for each table
dimension. Lookup table coverage measures:

• The number of times during simulation that each combination of dimension input values is
between each of the break points.

• The number of times during simulation that each combination of dimension output values is below
the lowest break point and above the highest break point for each table dimension.

The total number of coverage points for an n-dimensional lookup table is the product of the number of
break points in each table dimension plus one. In the coverage report, an increasing white-to-green
color scale, with six evenly spaced data ranges starting with zero, indicates the number of time steps
that the software measures each interpolation or extrapolation point.

The software determines a percentage of total coverage by measuring the total interpolation and
extrapolation points that achieve a measurement of at least one time step during simulation between
a break point or beyond the end points.

If you select the Saturate on integer overflow coverage metric, the n-D Lookup Table block
receives saturate on integer overflow coverage. For more information, see “Saturate on Integer
Overflow Coverage” on page 1-8. The software treats each element of a vector or matrix as a separate
coverage measurement.

Math Function
If you select the Saturate on integer overflow coverage metric, the Math Function block receives
saturate on integer overflow coverage. For more information, see “Saturate on Integer Overflow

2 Model Objects That Receive Model Coverage

2-16

Coverage” on page 1-8. The software treats each element of a vector or matrix as a separate
coverage measurement.

MATLAB Function
For information about the type of coverage that Simulink Coverage reports for the MATLAB Function
block, see “Model Coverage for MATLAB Functions” on page 5-46.

MATLAB System
If you set the MATLAB System block parameter Simulate using to Code generation, then
Simulink Coverage records Decision, Condition, and MCDC coverage for MATLAB System blocks.

Logical expressions in assignment statements in the MATLAB System block are not analyzed.

Message Send
The Message Send block receives decision coverage if you select the Show enable port block
parameter. Decision coverage measures a true outcome for time steps where the block is enabled and
a false outcome for time steps where the block is not enabled. To receive 100% decision coverage, the
block must be enabled for at least one time step and not enabled for at least one time step.

MinMax
The MinMax block receives decision coverage based on passing each input to the output of the block.

For decision coverage based on passing each input to the output of the block, the coverage measures
the number of time steps that the simulation passes each input to the block output. The number of
decision points is based on the number of inputs to the block and whether they are scalar, vector, or
matrix.

If all inputs are passed to the block output for at least one time step, the Simulink Coverage software
reports the decision coverage as 100%. Otherwise, the software reports the coverage as the number
of inputs passed to the output during at least one time step, divided by the total number of inputs.

If you select the Saturate on integer overflow coverage metric, the MinMax block receives saturate
on integer overflow coverage. For more information, see “Saturate on Integer Overflow Coverage” on
page 1-8. The software treats each element of a vector or matrix as a separate coverage
measurement.

Model
The Model block does not receive coverage directly; the model that the block references receives
coverage. If the simulation mode for the referenced model is set to Normal, the Simulink Coverage
software reports coverage for all objects within the referenced model that receive coverage. . If the
simulation mode for the referenced model is set to SIL or PIL and you have Embedded Coder
installed, the Simulink Coverage software reports coverage for the code generated from your
model .If the simulation mode is set to a value other than Normal, SIL, or PIL, the software cannot
measure coverage for the referenced model.

 Model Objects That Receive Coverage

2-17

In the Coverage pane of the Configuration Parameters dialog box, select the referenced models for
which you want to report coverage. The software generates a coverage report for each referenced
model you select.

If your model contains multiple instances of the same referenced model, the software records
coverage for all instances of that model where the simulation mode of the Model block is set to
Normal. The coverage report for that referenced model combines the coverage data for all Normal
mode instances of that model.

The coverage reports for all analyzed models in a model reference hierarchy are linked from a
summary report.

Note For details on how to select referenced models to report coverage, see “Referenced Models” on
page 3-3.

Multiport Switch
The Multiport Switch block receives decision coverage based on passing each input, excluding the
first control input, to the output of the block.

For decision coverage based on passing each input, excluding the first control input, to the output of
the block, the coverage measures the number of time steps that each input is passed to the block
output. The number of decision points is based on the number of inputs to the block and whether the
control input is scalar or vector.

If all inputs, excluding the first control input, are passed to the block output for at least one time step,
decision coverage is 100%. Otherwise, the Simulink Coverage software reports coverage as the
number of inputs passed to the output during at least one time step, divided by the total number of
inputs minus one.

If you select the Saturate on integer overflow coverage metric, the Multiport Switch block receives
saturate on integer overflow coverage. For more information, see “Saturate on Integer Overflow
Coverage” on page 1-8. The software treats each element of a vector or matrix as a separate
coverage measurement.

Observer Model
The Observer Reference block does not receive coverage directly; the Observer model that the block
references receives coverage metrics for the blocks inside that model. Only Observers models in
Normal mode are analyzed for coverage.

You can select Observer models for coverage the same way you select referenced models. For more
information about selecting models for analysis, see “Referenced Models” on page 3-3.

Only Observer models that you reference from the top model are active during a simulation and can
receive coverage. Terminate Function blocks located inside Observer models do not receive coverage.

The coverage results for each Observer model are captured in separate cvdata objects. Each model
referenced from an Observer model is considered an Observer model and has its own cvdata object.
If you record coverage for multiple models in a model reference hierarchy, the results are collected in
a cv.cvdatagroup object. The summary report links to the coverage reports for all analyzed models
in the hierarchy.

2 Model Objects That Receive Model Coverage

2-18

PID Controller, PID Controller (2 DOF)
If you select the Saturate on integer overflow coverage metric, the PID Controller and PID
Controller (2 DOF) blocks receive saturate on integer overflow coverage. For more information, see
“Saturate on Integer Overflow Coverage” on page 1-8. The software treats each element of a vector
or matrix as a separate coverage measurement.

Product
If you select the Saturate on integer overflow coverage metric, the Product block receives saturate
on integer overflow coverage. For more information, see “Saturate on Integer Overflow Coverage” on
page 1-8. The software treats each element of a vector or matrix as a separate coverage
measurement.

Proof Assumption
The Proof Assumption block receives Simulink Design Verifier coverage. Simulink Design Verifier
coverage is based on the points and intervals defined in the block dialog box. Simulink Design Verifier
coverage measures the number of time steps that each point or interval defined in the block is
satisfied. The total number of objective outcomes is based on the number of points or intervals
defined in the Proof Assumption block.

If all points and intervals defined in the block are satisfied for at least one time step, Simulink Design
Verifier coverage is 100%. Otherwise, the Simulink Coverage software reports coverage as the
number of points and intervals satisfied during at least one time step, divided by the total number of
points and intervals defined for the block.

Proof Objective
The Proof Objective block receives Simulink Design Verifier coverage. Simulink Design Verifier
coverage is based on the points and intervals defined in the block dialog box. Simulink Design Verifier
coverage measures the number of time steps that each point or interval defined in the block is
satisfied. The total number of objective outcomes is based on the number of points or intervals
defined in the Proof Objective block.

If all points and intervals defined in the block are satisfied for at least one time step, Simulink Design
Verifier coverage is 100%. Otherwise, the Simulink Coverage software reports coverage as the
number of points and intervals satisfied during at least one time step, divided by the total number of
points and intervals defined for the block.

Rate Limiter
The Rate Limiter block receives decision coverage. The Simulink Coverage software reports decision
coverage for the Rising slew rate and Falling slew rate parameters.

For the Rising slew rate, decision coverage measures:

• The number of time steps that the block input changes more than or equal to the rising rate,
indicating a true decision.

• The number of time steps that the block input changes less than the rising rate, indicating a false
decision.

 Model Objects That Receive Coverage

2-19

For the Falling slew rate, decision coverage measures:

• The number of time steps that the block input changes less than or equal to the falling rate,
indicating a true decision.

• The number of time steps that the block input changes more than the falling rate, indicating a
false decision.

The software does not measure Falling slew rate coverage for a time step when the Rising slew
rate is true. Therefore, the total number of Falling slew rate decisions equals the number of time
steps that the Rising slew rate is false.

If at least one time step is true and at least one time step is false, decision coverage for each of the
two individual decisions for the block is 100%. If no time steps are true, or if no time steps are false,
decision coverage is 50%. The software treats each element of a vector or matrix as a separate
coverage measurement.

The Rate Limiter block implicitly compares the derivative of the input signal with an upper and lower
limit value. Therefore, if you select the Relational Boundary coverage metric, the Rate Limiter
block receives relational boundary coverage. For more information, see “Relational Boundary
Coverage” on page 1-8.

Relational Operator
The Relational Operator block receives condition coverage.

Condition coverage measures:

• the number of times that the specified relational operation was true.
• the number of times that the specified relational operation was false.

The Relational Operator block contains a comparison between its inputs. Therefore, if you select the
Relational Boundary coverage metric, the Relational Operator block receives relational boundary
coverage. For more information, see “Relational Boundary Coverage” on page 1-8.

Relay
The Relay block receives decision coverage. Simulink Coverage reports decision coverage for the
Switch on point and the Switch off point parameters.

For the Switch on point, decision coverage measures:

• The number of consecutive time steps that the block input is greater than or equal to the Switch
on point, indicating a true decision.

• The number of consecutive time steps that the block input is less than the Switch on point,
indicating a false decision.

For the Switch off point, decision coverage measures:

• The number of consecutive time steps that the block input is less than or equal to the Switch off
point, indicating a true decision.

• The number of consecutive time steps that the block input is greater than the Switch off point,
indicating a false decision.

2 Model Objects That Receive Model Coverage

2-20

The software does not measure Switch off point coverage for a time step when the switch on
threshold is true. Therefore, the total number of Switch off point decisions equals the number of
time steps that the Switch on point is false.

If at least one time step is true and at least one time step is false, decision coverage for each of the
two individual decisions for the block is 100%. If no time steps are true, or if no time steps are false,
decision coverage is 50%. The software treats each element of a vector or matrix as a separate
coverage measurement.

The Relay block contains an implicit comparison of its second input with a threshold value. Therefore,
if you select the Relational Boundary coverage metric, the Relay block receives relational boundary
coverage. For more information, see “Relational Boundary Coverage” on page 1-8.

Requirements Table
The Requirements Table block receives decision, condition, MCDC, relational boundary, and
saturation on integer overflow coverage for the logic contained in the Precondition column for each
requirement in the Requirements Table tab. The Postcondition column and Assumptions Table
tab do not receive coverage.

Simulink Coverage reports coverage for the Precondition column similarly to that of a Stateflow
chart or a MATLAB Function block. For example, if a precondition specifies that the postcondition
must be met when A < C1 && B ~= C2, Simulink Coverage can analyze and report coverage
results for this statement.

C/C++ S-Function
Model coverage is supported for C/C++ S-Functions. The coverage report for the model contains
results for each instance of an S-Function block in the model. The results for an S-Function block link
to a separate coverage report for the C/C++ code in the block.

To generate coverage report for S-Functions:

1 When creating the S-Functions, enable support for coverage. For more information, see “Make S-
Function Compatible with Model Coverage” on page 5-72.

2 When generating the coverage report, enable support for S-Functions. For more information, see
“Generate Coverage Report for S-Function” on page 5-73.

The following coverage types are reported for S-Functions:

• “Cyclomatic Complexity” on page 4-4
• “Condition Coverage” on page 4-2
• “Decision Coverage” on page 4-3
• “Modified Condition/Decision Coverage (MCDC)” on page 4-4
• “Relational Boundary Coverage” on page 4-5
• Percentage of statements covered

The coverage data for S-Function blocks is obtained in the following way:

• The coverage result for a block is a weighted average of the result over all files in the block.

 Model Objects That Receive Coverage

2-21

For instance, an S-Function block has two files, file1.c and file2.c. The decision coverage for
file1.c is 75% (3/4 outcomes covered) and that for file2.c is 50% (10/20 outcomes covered).
The decision coverage for the block is 13/24 ≈ 54 %.

• For each file, the coverage result is a weighted average of the result over all functions in the file.
• For each function, the coverage result is a weighted average of the result over all statements in

the function that receive that coverage.

Note Model coverage for S-Functions have the following restrictions:

• Only Level-2 C/C++ S-Functions are supported for coverage. For an example of a level-2 C S-
Function, see “Create a Basic C MEX S-Function”.

• C++ class templates are not instrumented for coverage.

Saturation
Simulink Coverage reports decision coverage for the Upper limit and Lower limit parameters of the
Saturation block and relational boundary coverage for the Saturation block.

For the Upper limit, decision coverage measures:

• The number of time steps that the block input is greater than the upper limit, which indicates a
true decision outcome and that the block output saturates at the upper limit.

• The number of time steps that the block input is less than or equal to the upper limit, which
indicates a false decision outcome.

For the Lower limit, decision coverage measures:

• The number of time steps that the block input is greater than or equal to the lower limit, which
indicates a true decision outcome.

• The number of time steps that the block input is less than the lower limit, which indicates a false
decision outcome and that the block output saturates at the lower limit.

Simulink Coverage does not measure coverage for the Lower limit decision at a time step when the
upper limit is true. Therefore, the total number of Lower limit decision evaluations is equal to the
number of time steps that the Upper limit is false. Simulink Coverage reports 0% coverage for the
Lower limit decision if the Upper limit decision is true at every time step.

For each decision, Simulink Coverage reports 100% coverage if the decision returns a true outcome
for at least one time step and a false outcome for at least one time step. If a decision has no true
outcomes or no false outcomes, Simulink Coverage reports 50% coverage for that decision. The
decision coverage for the Saturation block is the sum of the coverage for the Upper limit and Lower
limit decisions. For example, if a Saturation block receives 100% coverage for the Upper limit
decision, and 50% coverage for the Lower limit decision, then the Saturation block receives a total
of 75% decision coverage, with 3 out of 4 decision outcomes satisfied.

If the input signal to the Saturation block is a vector or matrix, each element is a separate coverage
measurement. For example, an input signal that is a two element vector results in a total of eight
decision outcomes within the Saturation block instead of four.

The Saturation block contains an implicit comparison of the input with an upper and lower limit
value. Therefore, if you select the Relational boundary coverage metric in the Coverage pane of

2 Model Objects That Receive Model Coverage

2-22

the Configuration Parameters window, the Saturation block receives relational boundary coverage.
For more information, see “Relational Boundary Coverage” on page 1-8.

Saturation Dynamic
If you select the Saturate on integer overflow coverage metric, the Saturation Dynamic block
receives saturate on integer overflow coverage. For more information, see “Saturate on Integer
Overflow Coverage” on page 1-8. The software treats each element of a vector or matrix as a separate
coverage measurement.

Sign
The Sign block receives decision coverage and relational boundary coverage.

Sign blocks have three decision outcomes, one for the negative outcome, one for the positive
outcome, and one for the zero outcome.

The Sign block implicitly compares the input with zero. Therefore, if you select the Relational
Boundary coverage metric, the Sign block receives relational boundary coverage. For more
information, see “Relational Boundary Coverage” on page 1-8.

Simulink Design Verifier Functions in MATLAB Function Blocks
The following functions in MATLAB Function blocks receive Simulink Design Verifier coverage:

• sldv.condition
• sldv.test
• sldv.assume
• sldv.prove

Each of these functions evaluates an expression expr, for example, sldv.test(expr), where expr
is any valid Boolean MATLAB expression. Simulink Design Verifier coverage measures the number of
time steps that the expression expr evaluates to true.

If expr is true for at least one time step, Simulink Design Verifier coverage for that function is 100%.
Otherwise, the Simulink Coverage software reports coverage for that function as 0%.

Sqrt, Signed Sqrt, Reciprocal Sqrt
If you select the Saturate on integer overflow coverage metric, the Sqrt, Signed Sqrt, and
Reciprocal Sqrt blocks receive saturate on integer overflow coverage. For more information, see
“Saturate on Integer Overflow Coverage” on page 1-8. The software treats each element of a vector
or matrix as a separate coverage measurement.

Sum, Add, Subtract, Sum of Elements
If you select the Saturate on integer overflow coverage metric, the Sum, Add, Subtract, and Sum of
Elements blocks receive saturate on integer overflow coverage. For more information, see “Saturate
on Integer Overflow Coverage” on page 1-8. The software treats each element of a vector or matrix as
a separate coverage measurement.

 Model Objects That Receive Coverage

2-23

Switch
The Switch block receives decision coverage based on the control input to the block. Decision
coverage measures:

• The number of time steps that the control input evaluates to true.
• The number of time steps the control input evaluates to false.

The number of decision points is based on whether the control input is scalar or vector.

If you select the Saturate on integer overflow coverage metric, the Switch block receives saturate
on integer overflow coverage. For more information, see “Saturate on Integer Overflow Coverage” on
page 1-8. The software treats each element of a vector or matrix as a separate coverage
measurement.

The Switch block contains an implicit comparison of its second input with a threshold value.
Therefore, if you select the Relational Boundary coverage metric, the Switch block receives
relational boundary coverage. For more information, see “Relational Boundary Coverage” on page 1-
8.

SwitchCase, SwitchCase Action Subsystem
The SwitchCase block and SwitchCase Action Subsystem receive decision coverage. The Simulink
Coverage software measures decision coverage individually for each switch case defined in the block
and also for the default case. The number of decision outcomes is equal to the number of case
conditions plus one for the default case, if one is defined.

The software reports the total number of time steps that each case evaluates to true. If each case,
including the default case, evaluates to true at least once, decision coverage is 100%. The software
determines the decision coverage by the number of cases that evaluate true for at least one time step
divided by the total number of cases.

If the SwitchCase block does not contain a default case, the software measures decision coverage
for the number of time steps in which none of the cases evaluated to true. In the coverage report, this
coverage is reported as implicit-default.

Test Condition
The Test Condition block receives Simulink Design Verifier coverage. Simulink Design Verifier
coverage is based on the points and intervals defined in the block dialog box. Simulink Design Verifier
coverage measures the number of time steps that each point or interval defined in the block is
satisfied. The total number of objective outcomes is based on the number of points or intervals
defined in the Test Condition block.

If all points and intervals defined in the block are satisfied for at least one time step, Simulink Design
Verifier coverage is 100%. Otherwise, the Simulink Coverage software reports coverage as the
number of points and intervals satisfied during at least one time step, divided by the total number of
points and intervals defined for the block.

Test Objective
The Test Objective block receives Simulink Design Verifier coverage. Simulink Design Verifier
coverage is based on the points and intervals defined in the block dialog box. Simulink Design Verifier

2 Model Objects That Receive Model Coverage

2-24

coverage measures the number of time steps that each point or interval defined in the block is
satisfied. The total number of objective outcomes is based on the number of points or intervals
defined in the Test Objective block.

If all points and intervals defined in the block are satisfied for at least one time step, Simulink Design
Verifier coverage is 100%. Otherwise, the Simulink Coverage software reports coverage as the
number of points and intervals satisfied during at least one time step, divided by the total number of
points and intervals defined for the block.

Triggered Models
A Model block can reference a model that contains edge-based trigger ports at the root level of the
model. Triggered models receive decision, condition, and MCDC coverage.

Decision coverage measures:

• The number of time steps that the referenced model is triggered, indicating a true decision.
• The number of time steps that the referenced model is not triggered, indicating a false decision.

If at least one time step is true and at least one time step is false, decision coverage for the Model
block that references the triggered model is 100%. If no time steps are true, or if no time steps are
false, decision coverage is 50%.

Only if the trigger input is a vector, the Simulink Coverage software measures condition coverage for
the trigger port in the referenced model. For the trigger port, condition coverage measures:

• The number of time steps that each element of the trigger port is true.
• The number of time steps that each element of the trigger port is false.

The software reports condition coverage based on the total number of possible conditions and how
many are true for at least one time step and how many are false for at least one time step.

If the trigger port is a vector, the software measures MCDC coverage for the trigger port only.
Because the trigger port of the referenced model is an OR of the vector inputs, if, during at least one
time step, each vector trigger port is exclusively true and if, during at least one time step, all vector
trigger port inputs are false, MCDC coverage is 100%. The software treats each element of the vector
as a separate condition for MCDC coverage measurement.

Triggered Subsystem
The Triggered Subsystem block receives decision, condition, and MCDC coverage.

Decision coverage measures:

• The number of time steps that the block is triggered, indicating a true decision.
• The number of time steps that the block is not triggered, indicating a false decision.

If at least one time step is true and at least one time step is false, decision coverage is 100%. If no
time steps are true, or if no time steps are false, decision coverage is 50%.

The Simulink Coverage software measures condition coverage for the trigger input only if the trigger
input is a vector. For the trigger input, condition coverage measures:

 Model Objects That Receive Coverage

2-25

• The number of time steps that each element of the trigger edge is true.
• The number of time steps that each element of the trigger edge is false.

The software reports condition coverage based on the total number of possible conditions and how
many are true for at least one time step and how many are false for at least one time step.

If the trigger input is a vector, the software measures MCDC coverage for the trigger input only.
Because the trigger edge of the subsystem is an OR of the vector inputs, if, during at least one time
step, each vector trigger edge input is exclusively true and if, during at least one time step, all vector
trigger edge inputs are false, MCDC coverage is 100%. The software treats each element of the
vector as a separate condition for MCDC coverage measurement.

Trigonometric Function
The Trigonometric Function block receives decision and relational boundary coverage if you set the
Function parameter to asin or acos and you clear the Remove protection against out-of-range
input parameter. When you use these settings, the Trigonometric Function block uses a saturation
behavior to accept only inputs between -1 and 1.

Decision coverage analyzes the saturation decision logic for the Trigonometric Function block. The
coverage report displays this logic as one decision with three possible outcomes:

• Input is greater than 1
• Input is between -1 and 1
• Input is less than -1

The saturation behavior contains an implicit comparison of the input with an upper and lower limit
value. If you select the Relational boundary coverage metric in the Coverage pane of the
Configuration Parameters dialog box, the block receives relational boundary coverage. For more
information, see “Relational Boundary Coverage” on page 1-8.

If you select the Remove protection against out-of-range input parameter, the block receives only
execution coverage.

Truth Table
The Truth Table block is a Stateflow block that enables you to use truth table logic directly in a
Simulink model. The Truth Table block receives condition, decision, and MCDC coverage. For more
information on model coverage with Stateflow truth tables, see “Model Coverage for Stateflow Truth
Tables” on page 5-102.

Unary Minus
If you select the Saturate on integer overflow coverage metric, the Unary Minus block receives
saturate on integer overflow coverage. For more information, see “Saturate on Integer Overflow
Coverage” on page 1-8. The software treats each element of a vector or matrix as a separate
coverage measurement.

Weighted Sample Time Math
If you select the Saturate on integer overflow coverage metric, the Weighted Sample Time Math
block receives saturate on integer overflow coverage. For more information, see “Saturate on Integer

2 Model Objects That Receive Model Coverage

2-26

Overflow Coverage” on page 1-8. The software treats each element of a vector or matrix as a separate
coverage measurement.

While Iterator, While Iterator Subsystem
The While Iterator block and While Iterator Subsystem receive decision coverage. Decision coverage
is measured for the while condition value, which is determined by the while condition being
satisfied (true), or the while condition not being satisfied (false). Simulink Coverage software
reports the total number of times that each while condition evaluates to true and to false. If the
while condition evaluates to true at least once, and false at least once, decision coverage for the
while condition is 100%. If no while conditions are true, or if no while conditions are false,
decision coverage is 50%.

If the iteration limit is exceeded (true) or is not exceeded (false), the software measures decision
coverage independently. If the iteration limit evaluates to true at least once, and false at least once,
decision coverage for the iteration limit is 100%. If no iteration limits are true, or if no iteration limits
are false, decision coverage is 50%. If you set Maximum number of iterations to -1 (no limit), the
decision coverage for the iteration limit is true for all iterations and false for zero iterations, and
decision coverage is 50%.

 Model Objects That Receive Coverage

2-27

Model Objects That Do Not Receive Coverage
The Simulink Coverage software does not record Decision, Condition, or MCDC coverage for blocks
that are not listed in “Model Objects That Receive Coverage” on page 2-2.

Note The software only records model coverage when the Simulation mode parameter is set to
Normal. If you have Embedded Coder installed, the software can measure the coverage of code
generated from models in SIL or PIL mode. For more information, see “Code Coverage for Models in
Software-in-the-Loop (SIL) Mode and Processor-in-the-Loop (PIL) Mode” on page 4-6.

The following table identifies specific model objects that do not receive coverage in certain
conditions.

Model object Does not receive coverage...
Logical Operator block When the Operator parameter specifies XOR or

NXOR and there are more than twelve scalar
inputs or more than twelve elements in a vector
input.

Model block When the Simulation mode parameter specifies
Accelerator.

Coverage for Model blocks is the sum of the
coverage data for the contents of the referenced
model.

Protected model block Coverage information is not provided for
protected model blocks. See also “Model
Protection” (Simulink Coder).

Subsystem block When the Read/Write Permissions parameter is
set to NoReadOrWrite.

Stateflow chart

MATLAB Function block

When debugging/animation is not enabled for the
model or object.

Virtual Blocks Virtual blocks do not receive model coverage. For
more information, see “Nonvirtual and Virtual
Blocks”.

See Also

Related Examples
• “Types of Model Coverage” on page 1-4
• “Top-Level Model Coverage Report” on page 6-11

2 Model Objects That Receive Model Coverage

2-28

Setting Coverage Options

• “Specify Coverage Options” on page 3-2
• “Access, Manage, and Aggregate Coverage Results” on page 3-7
• “Cumulative Coverage Data” on page 3-15
• “Cumulative Coverage Analysis” on page 3-17
• “Collect Saturation on Integer Overflow Coverage” on page 3-33

3

Specify Coverage Options

Before starting a coverage analysis, you specify several coverage analysis options. On the Apps tab,
select Coverage Analyzer. On the Coverage tab, select Settings.

Coverage Pane
On the Coverage pane in the Configuration Parameters dialog box, set the options for the coverage
calculated during simulation.

3 Setting Coverage Options

3-2

Enable coverage analysis

Gather specified coverage results during simulation and report the coverage. When you select
Enable coverage analysis, these sections become available:

• “Scope of analysis” on page 3-3
• “Include in analysis” on page 3-5
• “Coverage metrics” on page 3-5

Scope of analysis

Specifies the systems for which the software gathers and reports coverage data. The options are:

• “Entire System” on page 3-3
• “Referenced Models” on page 3-3
• “Subsystem” on page 3-4

You must select Enable coverage analysis to specify the scope of analysis.

Entire System

By default, generates coverage data for the entire system. The coverage results include the top-level
and all supported subsystems and model references.

Referenced Models

Collect coverage for the referenced models and Observer models that you select. By default this
setting collects coverage for all referenced models where the simulation mode of the Model block is
Normal, Software-in-the-loop (SIL), or Processor-in-the-loop (PIL), and for active
Observer models where the simulation mode is Normal.

To specify the referenced models and Observer models for which Simulink Coverage collects
coverage data:

1 Select Enable coverage analysis.
2 For the scope of analysis, select Referenced Models.
3 Click Select Models.

 Specify Coverage Options

3-3

4 In the Select Models for Coverage Analysis dialog box, select the referenced models or Observer
models for which you want to collect coverage. You can also select the top-level model.

The icon next to the model name indicates the simulation mode for that referenced model.

If you have multiple Model blocks that reference the same model and whose simulation modes
are the same, selecting the check box for that model selects the check boxes for all instances of
that model with the same simulation mode.

5 Click OK.

Subsystem

Coverage analysis collects coverage during simulation for the subsystem that you select. By default,
generates coverage data for the entire model. To restrict coverage reporting to a particular
subsystem:

1 In the Configuration Parameters dialog box, on the Coverage pane, select Enable coverage
analysis.

2 Click Select Subsystem.

3 Setting Coverage Options

3-4

3 In the Subsystem Selection dialog box, select the subsystem for which you want to enable
coverage reporting and click OK.

Include in analysis

The Include in analysis section contains two options:

• MATLAB files enables coverage for any external functions called by MATLAB functions in your
model. You can define MATLAB functions in MATLAB Function blocks or in Stateflow charts.

To select the Coverage for MATLAB files option, you must select Enable coverage analysis.
• C/C++ S-functions enables coverage for C/C++ S-Function blocks in your model. Coverage

metrics are reported for the S-Function blocks and the C/C++ code in those blocks. For more
information, see “Generate Coverage Report for S-Function” on page 5-73.

You must select Enable coverage analysis to select the Coverage for S-Functions option.

Coverage metrics

Select the structural coverage level and other types of test case coverage analysis that you want the
tool to perform (see “Types of Model Coverage” on page 1-4). Simulink Coverage gathers and reports
those types of coverage for the subsystems, models, and referenced models that you specify.

The structural coverage levels are listed in order of strictness of test case coverage analysis:

• Block Execution — Enables “Execution Coverage (EC)” on page 1-4
• Decision — Enables “Execution Coverage (EC)” on page 1-4 and “Decision Coverage (DC)” on

page 1-4
• Condition Decision — Enables “Execution Coverage (EC)” on page 1-4, “Decision Coverage

(DC)” on page 1-4, and “Condition Coverage (CC)” on page 1-4
• Modified Condition Decision Coverage (MCDC) — enables “Execution Coverage (EC)” on

page 1-4, “Decision Coverage (DC)” on page 1-4, “Condition Coverage (CC)” on page 1-4, and
“Modified Condition/Decision Coverage (MCDC)” on page 1-5

Coverage metrics also includes Other metrics:

 Specify Coverage Options

3-5

• “Lookup Table Coverage” on page 1-6
• “Signal Range Coverage” on page 1-6
• “Signal Size Coverage” on page 1-7
• “Objectives and Constraints Coverage” on page 1-7
• “Saturate on Integer Overflow Coverage” on page 1-8
• “Relational Boundary Coverage” on page 1-8

You must select Enable coverage analysis to select the coverage metrics.

Results

In the Results section of the Coverage Configuration Parameters, select the destination for coverage
results. You must select Enable coverage analysis on the Coverage pane to set the Results
options.

• Save last run in workspace variable — Saves the results of the last simulation run in a cvdata
object in the workspace. Specify the workspace variable name in cvdata object name.

• cvdata object name — Name of the workspace variable where the results of the last simulation
run are saved. You must select Save last run in workspace variable to specify the cvdata
object name.

• Increment variable name with each simulation (var1, var2, ...) — Appends numerals to the
workspace variable names for each new result so that earlier results are not overwritten. You
must select Save last run in workspace variable to enable this option.

• Autosave data file name — Name of file to which coverage data results are saved. The default
name is $ModelName$_cvdata. $ModelName$ is the name of the model.

• Output directory — The folder where the coverage data is saved. The default location is
slcov_output/$ModelName$ in the current folder. $ModelName$ is the name of the model.

See Also

Related Examples
• “Access, Manage, and Aggregate Coverage Results” on page 3-7

3 Setting Coverage Options

3-6

Access, Manage, and Aggregate Coverage Results
In this section...
“Accessing Coverage Data from the Results Explorer” on page 3-7
“Managing Coverage Data from the Results Explorer” on page 3-12
“Accumulating Coverage Data from the Results Explorer” on page 3-13

After you “Specify Coverage Options” on page 3-2 and collect coverage results, you can use the
Results Explorer to access, manage, and aggregate the coverage data that you collect. After you
aggregate the coverage results you need, you can then create a “Top-Level Model Coverage Report”
on page 6-11 or “Export Model Coverage Web View” on page 6-58 using your aggregated coverage
data.

Accessing Coverage Data from the Results Explorer
To open the Results Explorer after coverage analysis, in the Coverage Analyzer app, click on
Results Explorer. The Results Explorer opens to show the most recent coverage run:

You can view the current data results summary from within the Results Explorer or click Generate
Report to create a full coverage report. If you do not make any changes to your model after you

 Access, Manage, and Aggregate Coverage Results

3-7

collect coverage, you do not need to re-simulate the model to generate a new coverage report. For
more information on coverage reports, see “Top-Level Model Coverage Report” on page 6-11.

Select Exclude inactive choices of variants to filter out coverage results for inactive variant
choices. Clear this option to receive coverage information about inactive variant choices. This option
applies to variant blocks that have the Variant activation time set to Startup and to variant
configurations in Stateflow charts. For more information, see “Model Coverage for Variant Blocks” on
page 5-106.

Click Highlight model with coverage results to provide highlighted results in your model that
allow you to quickly see coverage results for model objects. For more information, see “Overview of
Model Coverage Highlighting” on page 5-21.

Click Open Simulation Data Inspector to view the current selected run simulation data in the
Simulation Data Inspector. The model must generate valid data that can be opened in the Simulation
Data Inspector for this option to become available, for example, by selecting signals for signal
logging. For more information about the Simulation Data Inspector, see “View Data in the Simulation
Data Inspector”.

Settings

In the coverage Results Explorer, you can access the data and reporting settings for your coverage
data. To access these settings, click Settings.

3 Setting Coverage Options

3-8

Option Description
Enable collecting cumulative data Aggregates coverage results from successive

simulations, by default. You specify the name and
output folder of the .cvt file in the in the
“Results” on page 3-6 section of the
Configuration Parameters dialog box. For more
information, see “Cumulative Coverage Data” on
page 3-15.

 Access, Manage, and Aggregate Coverage Results

3-9

Option Description
Show cumulative progress report Shows the Current Run coverage results, the

Delta of coverage compared to the previous
cumulative data, and the total Cumulative data
from all current cumulative data separately in the
coverage reports. If you do not select this option,
only the total Cumulative data from all current
cumulative data are shown.

Show report Opens a generated HTML coverage report in a
MATLAB browser window at the end of model
simulation. For more information, see “Top-Level
Model Coverage Report” on page 6-11.

You access the HTML report from the Simulink
Coverage contextual tabs, which appear when
you open the Coverage Analyzer app.

Generate Web View Report Opens a generated Model Coverage Web View in
a MATLAB browser window at the end of model
simulation. For more information, see “Export
Model Coverage Web View” on page 6-58.

Include each test in the model summary At the top of the HTML report, the model
hierarchy table includes columns listing the
coverage metrics for each test. If you do not
select this option, the model summary reports
only the total coverage.

Show aggregated tests information If you collect coverage for one or more subsystem
harness, the Aggregated Tests section lists each
unit test run. For more information, see
“Aggregated Tests” on page 6-12.

Produce bar graphs in the model summary Causes the model summary to include a bar
graph for each coverage result for a visual
representation of the coverage.

Use two color bar graphs (red, blue) Red and blue bar graphs are displayed in the
report instead of black and white bar graphs.

Display hit/count ratio in the model
summary

Reports coverage numbers as both a percentage
and a ratio, for example, 67% (8/12).

Exclude fully covered model objects from
report

The coverage report includes only model objects
that the simulation does not cover fully, useful
when developing tests, because it reduces the
size of the generated reports.

Exclude fully covered model object details
from report

If you choose to include fully covered model
objects in the report, the report does not include
the details of the fully covered model objects

3 Setting Coverage Options

3-10

Option Description
Include cyclomatic complexity numbers in
summary

Includes the cyclomatic complexity (see “Types of
Model Coverage” on page 1-4) of the model and
its top-level subsystems and charts in the report
summary. A cyclomatic complexity number shown
in boldface indicates that the analysis considered
the subsystem itself to be an object when
computing its complexity. Boldface text can occur
for atomic and conditionally executed subsystems
and Stateflow Chart blocks.

Include cyclomatic complexity numbers in
block details

Includes the cyclomatic complexity metric in the
block details section of the report.

Filter Stateflow events from report Excludes coverage data on Stateflow events.
Filter Execution metric from report Excludes coverage data on Execution metrics
Include linked requirements in aggregate
coverage report

If you run at least two test cases in Simulink Test
that are linked to requirements in Requirements
Toolbox™, the aggregated coverage report details
the links between model elements, test cases, and
linked requirements. For more information, see
“Requirement Testing Details” on page 6-21.

Creating and Managing Filters

You can create, load, or edit filters for the current coverage data from within the Results Explorer.

1 Open the Results Explorer.
2 Click the Applied filters tab.

 Access, Manage, and Aggregate Coverage Results

3-11

Option Description
New filter Creates a blank filter and opens the Filter Editor

pane of the Coverage Results Explorer.
Load filter Opens the Load filter selection window.
Make justification filter rules for dead logic
(using Simulink Design Verifier)

Launches Simulink Design Verifier design error
detection. For more information, see “Analyze
Models for Design Errors” (Simulink Design
Verifier).

Make justification filter rules for dead logic
(using Polyspace® Code Prover™ results)

Opens a file selection window which asks for a
Polyspace Code Prover results file.

For more information on filtering model objects, see “Creating and Using Coverage Filters” on page
7-11.

Managing Coverage Data from the Results Explorer

After you collect coverage, you can manage the coverage data from the Results Explorer. To view
coverage data details, under Current Cumulative Data, click the coverage data of interest. You can

3 Setting Coverage Options

3-12

edit the description and tags for each run. Before you leave the coverage data details view, click
Apply to apply your changes. Otherwise, the changes are reverted.

When you apply changes to coverage data, such as adding descriptions and tags, the data shows an
asterisk next to its icon. To save these changes, right-click the data and click Save modified
coverage data.

When you highlight the model with coverage results, the Coverage Results Explorer displays (H) next
to Current Cumulative Data.

Accumulating Coverage Data from the Results Explorer
If you collect multiple coverage runs, each run is listed separately in the Data Repository. You can
drag and drop runs from the Data Repository to the Current Cumulative Data to manage which runs
to include in the cumulative coverage data. Alternatively, right-click runs in the Data Repository or
the Current Cumulative Data to include or exclude them in the cumulative coverage data.

To save the current cumulative data set to a .cvt file, click Save cumulative coverage data.
Alternatively, you can right-click the Current Cumulative Data and select Save cumulative
coverage data.

 Access, Manage, and Aggregate Coverage Results

3-13

Load Existing Coverage Data

The Data Repository contains the coverage data, which is saved to the Input folder. You specify the
Input folder on the Configuration Parameters dialog box > Coverage > “Results” on page 3-6
section, in the Output directory field.

To synchronize the data in the input folder and the data in the Data Repository, click Synchronize

with the current coverage data folder .

To load existing coverage data to the Data Repository:

1 Right-click the Data Repository.
2 Select Load coverage data.
3 Select existing coverage data for the current model and click Open.

See Also
cvdata | cvhtml

Related Examples
• “Cumulative Coverage Analysis” on page 3-17
• “Model Coverage for Variant Blocks” on page 5-106
• “Top-Level Model Coverage Report” on page 6-11
• “Exclude inactive choices of variants”

3 Setting Coverage Options

3-14

Cumulative Coverage Data
In this section...
“Collect Coverage by Clicking the Run Button to Simulate Your Model” on page 3-15
“Collect Coverage Using the Multiple Simulations Pane” on page 3-15
“Collect Coverage for Multiple Tests Using the Test Manager in Simulink Test” on page 3-15
“Collect Coverage Programmatically and Aggregate Results” on page 3-16

When you simulate your model with coverage enabled, you can run more than one simulation to get a
cumulative result. The cumulative result shows the percentage of coverage in your model summed
over all the simulations. Use one of the following methods to generate cumulative coverage results:

Collect Coverage by Clicking the Run Button to Simulate Your Model
When you run more than one simulation with coverage enabled, Simulink Coverage updates and
displays coverage data for each simulation, as well as the aggregated total. You see these results in
the Coverage Details pane and in the Coverage Results Explorer. You can change this behavior in
the Configuration Parameters dialog box. Click Coverage and, in the right pane, under Advanced
parameters, select or deselect the Enable cumulative data collection parameter. By default, this
parameter is selected.

Note If you make changes to the model or block settings between simulations that affect the type or
number of coverage objective outcomes, the cumulative coverage data resets. Save your coverage
results to a file if you make changes of this nature and want to access the previous results.

For more information about managing cumulative results, see “Access, Manage, and Aggregate
Coverage Results” on page 3-7.

Collect Coverage Using the Multiple Simulations Pane
You can use the Multiple Simulations pane to collect coverage for two or more simulations. In
Simulink, on the Simulation tab, under Prepare, click Multiple Simulations. In this pane, you can
create design studies, add simulation scenarios to your design studies, and then run all the scenarios
as a series of simulations. If you have Parallel Computing Toolbox™, the simulations run in parallel.
When you collect coverage this way, Simulink Coverage updates and displays data for each simulation
as well as the aggregated total. You see the coverage results in the Coverage Details pane and in
the Coverage Results Explorer. For an example, see “Collect Coverage for Multiple Simulations by
Using Design Studies” on page 5-112

Collect Coverage for Multiple Tests Using the Test Manager in Simulink
Test
You can use the Test Manager in Simulink Test to author test scenarios. In your test file, under
Coverage Settings, select Record coverage for system under test. Then select the coverage
metrics you want to collect. When you collect coverage this way, the Test Manager shows the
cumulative coverage summary for your test file under the Aggregated Coverage Results section. If
you click the model name in the Test Manager coverage summary, it highlights your model with those

 Cumulative Coverage Data

3-15

coverage results. The Test Manager also provides a link to the coverage report. For an example, see
“Analyze Model Coverage by Using the Test Manager in Simulink Test”.

Collect Coverage Programmatically and Aggregate Results
You can collect your coverage data programmatically by using sim or parsim, and then aggregate
the results manually using the overloaded + operator. You can then save and load coverage results by
using cvsave and cvload. For more information, see “Perform Operations on Coverage Data” on
page 8-24.

See Also
cvload | cvsave | cvdata | sim | parsim

Related Examples
• “Access, Manage, and Aggregate Coverage Results” on page 3-7
• “Cumulative Coverage Analysis” on page 3-17
• “Obtain Cumulative Coverage for Reusable Subsystems” on page 5-33
• “Perform Operations on Coverage Data” on page 8-24

3 Setting Coverage Options

3-16

Cumulative Coverage Analysis

This example illustrates the use of the Coverage Results Explorer to simplify the generation of
cumulative coverage data and reports spanning a set of multiple coverage runs.

Open Example Model

This example uses the slvnvdemo_ratelim_harness model to explain the settings and options to
accumulate coverage. Inside this model is an implementation of an Adjustable Rate Limiter. It uses
three Switch blocks to control when the output should be limited and the type of limit to apply.

Inputs are produced using three From Workspace blocks: gain, rising limit, and falling limit. The
values of the inputs are specified by six variables defined in the MATLAB® workspace: t_gain,
u_gain, t_pos, u_pos, t_neg, and u_neg.

open_system('slvnvdemo_ratelim_harness');

open_system('slvnvdemo_ratelim_harness/Adjustable Rate Limiter');

 Cumulative Coverage Analysis

3-17

Enable Coverage Analysis

Start by opening the coverage settings. From the Modeling tab, select Model Settings.

To enable the coverage tool, select Enable coverage analysis in the Coverage pane. This setting
enables the other options in the Coverage pane.

For this example, collect condition and decision coverage. Under the Coverage metrics panel, set
the Structural coverage level to Condition Decision.

3 Setting Coverage Options

3-18

Click OK to apply your selected settings and close this dialog.

Simulate Model with First Test Case

The first test case exercises the scenario where the input values do not change rapidly. It uses a sine
wave as the time varying signal and constants for rising and falling limits.

t_gain = (0:0.02:2.0)';
u_gain = sin(2*pi*t_gain);

Calculate the minimum and maximum change of the time varying input using the MATLAB diff
function.

max_change = max(diff(u_gain))
min_change = min(diff(u_gain))

max_change =

 0.1253

 Cumulative Coverage Analysis

3-19

min_change =

 -0.1253

Based on these minimum and maximum rates of change, set the rate limits to 1 and -1. As such, the
rate of change of the input will be well within these limits for this test run.

t_pos = [0;2];
u_pos = [1;1];
t_neg = [0;2];
u_neg = [-1;-1];

Simulate the model with this first set of input variables by clicking the Run (Coverage) button.

Review First Test Case in Results Explorer

To open the Results Explorer, in the Coverage Analyzer app, click Results Explorer.

At this point the Current Cumulative Data contains just this first coverage run (tagged as Run 1).
The Results Explorer initially shows information regarding this latest coverage run, including a
summary of results for each enabled metric.

To keep track of the intent of this simulation, enter the text "Test within rate limits" in the
Description field and click Apply.

3 Setting Coverage Options

3-20

Simulate Model with Second Test Case

The second test case complements the first case with a rising gain that exceeds the rate limit. After a
second it increases the rate limit so that the gain changes are below that limit.

t_gain = [0;2];
u_gain = [0;4];
t_pos = [0;1;1;2];
u_pos = [1;1;5;5]*0.02;
t_neg = [0;2];
u_neg = [0;0];

Simulate the model with this second set of variables by clicking the Run (Coverage) button.

Generate Cumulative Progress Report for Second Test Case

Now that multiple coverage runs have been performed, you can generate cumulative coverage
reports.

First, add a brief description of this run, as was done for the previous simulation. Enter the text
"Test rising rate limit" in the Description field for Run 2 and click Apply.

 Cumulative Coverage Analysis

3-21

There are different formats of coverage reports that can be generated. To visualize how the most
recent simulation affects the cumulative coverage results, you can generate a cumulative progress
report.

In the Results Explorer, under Settings, select Show cumulative progress report and click Apply.

3 Setting Coverage Options

3-22

Click on Current Cumulative Data in the leftmost pane of the Results Explorer. Note that the
Summary indicates the cumulative coverage results accumulated from Run 1 and Run 2. Click on
Generate Report to create the cumulative progress report.

 Cumulative Coverage Analysis

3-23

The Summary section of the cumulative progress report has three columns: Current Run, Delta, and
Cumulative. The Current Run column displays the coverage from the last simulation listed under
Current Cumulative Data (which is Run 2 in this case). The Delta column displays the coverage
exposed by the current run that was not achieved in the cumulative results before this simulation.
The Cumulative column gives the current cumulative coverage results.

3 Setting Coverage Options

3-24

 Cumulative Coverage Analysis

3-25

Simulate Model with Third Test Case

The third test case is a mirror image of the second, with the rising gain replaced by a falling gain.

t_gain = [0;2];
u_gain = [-0.02;-4.02];
t_pos = [0;2];
u_pos = [0;0];
t_neg = [0;1;1;2];
u_neg = [-1;-1;-5;-5]*0.02;

Simulate the model with this third set of variables by clicking the Run (Coverage) button.

Generate Cumulative Progress Report for Third Test Case

Once again, add a brief description of the latest run. Enter the text "Test falling rate limit"
in the Description field for Run 3 and click Apply.

Navigate to Current Cumulative Data and click Generate Report to create a cumulative progress
report for this latest run.

3 Setting Coverage Options

3-26

Notice that with this latest run, the cumulative results achieve full coverage for the Decision,
Condition, and Execution metrics.

 Cumulative Coverage Analysis

3-27

3 Setting Coverage Options

3-28

Refine Cumulative Dataset

If you determine that a particular coverage run is not necessary, you can exclude this run from the
cumulative dataset and generate a new cumulative report.

In the Results Explorer, under Current Cumulative Data, right-click on Run 1 and select Exclude
from cumulative data.

Generate Final Cumulative Coverage Report

Now that you have selected the desired subset of test runs, you can generate a coverage report for
the accumulated results.

Navigate to Settings, deselect Show cumulative progress report, and then click Apply.

 Cumulative Coverage Analysis

3-29

Navigate to Current Cumulative Data and click Generate Report.

3 Setting Coverage Options

3-30

The cumulative coverage report displays the results associated with the current cumulative data.
Notice under the Tests section, there is a single test with the description "Test rising rate
limit,Test falling rate limit", indicating that this test contains the accumulated results
from runs 2 and 3.

The Summary section shows that these cumulative results attain full coverage for all metrics
analyzed.

 Cumulative Coverage Analysis

3-31

3 Setting Coverage Options

3-32

Collect Saturation on Integer Overflow Coverage

This example shows how to configure your model to collect saturate on integer overflow coverage.

The slvnvdemo_saturation_on_overflow_coverage model contains three Sum blocks
configured to saturate on integer overflow. This model uses a test harness that supplies the Test
Unit subsystem with a set of inputs that results in full saturation on integer overflow coverage on
one Sum block and incomplete coverage on the other two.

Enable Saturation on Integer Overflow Coverage on the Model

On the Modeling tab, click Model Settings. In the Configuration Parameters window, in the left
pane, click Coverage. To enable saturation on integer overflow coverage, under Coverage metrics,
click Other metrics to expand the list. Select the Saturation on integer overflow metric. This
model is already configured to collect saturation on integer overflow coverage.

Enable Saturate on Integer Overflow on a Block

For a block to receive saturation on integer overflow coverage, you must configure the block to
saturate on integer overflow. If you do not select the block parameter, then saturation on integer
overflow coverage analysis does not report on the block.

For example, in the example model, double-click the Test Unit subsystem, then double-click the
Controller subsystem. Double-click on one of the Sum blocks to open its Block Parameters window.
Note that, in the Signal Attributes tab, the Saturate on integer overflow block parameter is
selected.

 Collect Saturation on Integer Overflow Coverage

3-33

Simulate the Model and Examine the Coverage Results

In the model, click the Run (Coverage) button. After the simulation completes, the Coverage Details
pane opens, and displays the coverage report.

Click the green Sum block. From the report, you can see that the saturation objective is true for two
time steps and false for one time step. The true outcome indicates that the block reached its integer
overflow threshold and saturated.

3 Setting Coverage Options

3-34

Click one of the red Sum blocks. The block does not ever reach the integer overflow threshold, and
thus never saturates, because the saturation outcome is false for all 3 time steps. This results in a
reported saturation on integer overflow coverage of 50%.

 Collect Saturation on Integer Overflow Coverage

3-35

See Also
overflowsaturationinfo | Add

Related Examples
• “Saturate on Integer Overflow Coverage” on page 1-8
• “Saturate on overflow”

3 Setting Coverage Options

3-36

Code Coverage

4

Types of Code Coverage

If you have Embedded Coder, Simulink Coverage can perform several types of code coverage analysis
for models in software-in-the-loop (SIL) mode, processor-in-the-loop (PIL) mode, and for the code
within supported custom code blocks.

Statement Coverage
Statement coverage measures the number of source code statements that execute when the code
runs. Use this type of coverage to determine whether every statement in the program has been
invoked at least once.

The percentage of statement coverage is represented by the following equation:

Statement coverage = (Number of executed statements / Total number of statements) *100

Statement Coverage Example

This code snippet contains five statements. To achieve 100% statement coverage, you need at least
one test with positive x values, one test with negative x values, and one test with x values of zero.

if (x > 0)
 printf("x is positive");
else if (x < 0)
 printf("x is negative");
else
 printf("x is 0");

Condition Coverage
Condition coverage analyzes statements that include conditions in source code. Conditions are C/C+
+ Boolean expressions that contain relation operators (<, >, <=, or >=), equation operators (!= or ==),
or logical negation operators (!), but that do not contain logical operators (&& or ||). This type of
coverage determines whether every condition has been evaluated to all possible outcomes at least
once.

The percentage of condition coverage is represented by the following equation:

Condition coverage = (Number of executed condition outcomes / Total number of condition outcomes)
*100

Condition Coverage Example

In this expression:

y = x<=5 || x!=7;

there are two conditions:

x<=5
x!=7

4 Code Coverage

4-2

To achieve 100% condition coverage, your test cases need to demonstrate a true and false outcome
for both conditions. For example, a test case where x is equal to 4 demonstrates a true case for both
conditions, and a case where x is equal to 7 demonstrates a false case for both conditions.

Boolean Assignment Statements

Code coverage analyzes assignment statements that contain Boolean values and reports them as a
condition. Model coverage only analyzes logical expressions in assignment statements, meaning only
expressions that contain a logical operator such as the logical AND (&&) or the logical OR (||). This
difference can result in a discrepancy between model and code coverage results and can sometimes
result in unsatisfiable condition outcomes in the code coverage analysis.

For example, consider the following statement:

bool A = true;

During code coverage analysis, Simulink Coverage analyzes this statement for condition coverage.
The statement is true at every time step, so the result is that you get 50% condition coverage on this
statement because the false case cannot occur. Model coverage does not analyze this statement, so it
also creates a discrepancy between model and code coverage results.

Decision Coverage
Decision coverage analyzes statements that represent decisions in source code. Decisions are
Boolean expressions composed of conditions and one or more of the logical C/C++ operators && or
||. Conditions within branching constructs (if/else, while, and do-while) are decisions. Decision
coverage determines the percentage of the total number of decision outcomes the code exercises
during execution. Use this type of coverage to determine whether all decisions, including branches,
in your code are tested.

Note The decision coverage definition for DO-178C compliance differs from the Simulink Coverage
definition. For decision coverage compliance with DO-178C, in the Configuration Parameters, set the
Structural Coverage Level to Condition Decision for Boolean expressions not containing && or
|| operators.

The percentage of decision coverage is represented by the following equation:

Decision coverage = (Number of executed decision outcomes / Total number of decision outcomes)
*100

Decision Coverage Example

This code snippet contains three decisions:

y = x<=5 && x!=7; // decision #1

if(x > 0) // decision #2
 printf("decision #2 is true");
else if(x < 0 && y) // decision #3
 printf("decision #3 is true");
else
 printf("decisions #2 and #3 are false");

 Types of Code Coverage

4-3

To achieve 100% decision coverage, your test cases must demonstrate a true and false outcome for
each decision.

Modified Condition/Decision Coverage (MCDC)
Modified condition/decision coverage (MCDC) analyzes whether the conditions within decisions
independently affect the decision outcome during execution. To achieve 100% MCDC, your test cases
must demonstrate:

• All conditions within decisions have been evaluated to all possible outcomes at least once.
• Every condition within a decision independently affects the outcome of the decision.

The percentage of MCDC is represented by the following equation:

MCDC coverage = (Number of conditions evaluated to all possible outcomes affecting the outcome of
the decision / Total number of conditions within the decisions) *100

Modified Condition/Decision Coverage Example

For this decision:

X || (Y && Z)

the following set of test cases delivers 100% MCDC coverage.

 X Y Z
Test case #1 0 0 1
Test case #2 0 1 0
Test case #3 0 1 1
Test case #4 1 0 1

In order to demonstrate that the conditions Y and Z can independently affect the decision outcome,
the condition X must be false for those test cases. If the condition X is true, then the decision is
already known to be true. Therefore, the conditions Y and Z would not affect the decision outcome.

Cyclomatic Complexity
Cyclomatic complexity measures the structural complexity of code by using the McCabe complexity
measure. To compute the cyclomatic complexity of code, code coverage uses this formula:

c = ∑
1

N
(on− 1)

N is the number of decisions in the code. on is the number of outcomes for the nth decision point.
Code coverage adds 1 to the complexity number for each C/C++ function.

Coverage Example

For this code snippet, the cyclomatic complexity is 3:

void evalNum(int x)
{

4 Code Coverage

4-4

 if (x > 0) // decision #1
 printf("x is positive");
 else if (x < 0) // decision #2
 printf("x is negative");
 else
 printf("x is 0");
}

The code contains one function that has two decision points. Each decision point has two outcomes.
Using the preceding formula, N is 2, o1 is 2, and o2 is 2. Code coverage uses the formula with these
decisions and outcomes and adds 1 for the function. The cyclomatic complexity for this code snippet
is:

c = (o1 − 1) + (o2 − 1) + 1 = (2 − 1) + (2 − 1) + 1 = 3

Relational Boundary Coverage
Relational boundary code coverage examines code that has relational operations. Relational boundary
code coverage metrics align with those for model coverage, as described in “Relational Boundary
Coverage” on page 1-8. Fixed-point values in your model are integers during code coverage.

Function Coverage
Function coverage determines whether all the functions of your code have been called during
simulation. For instance, if there are ten unique functions in your code, function coverage checks if
all ten functions have been executed at least once during simulation.

Function Call Coverage
Function call coverage determines whether all function call-sites in your code have been executed
during simulation. For instance, if functions are called twenty times in your code, function call
coverage checks if all twenty function calls have been executed during simulation.

 Types of Code Coverage

4-5

Code Coverage for Models in Software-in-the-Loop (SIL) Mode
and Processor-in-the-Loop (PIL) Mode

If you have Embedded Coder and Simulink Coverage, you can analyze coverage for generated code
during a software-in-the-loop (SIL) or processor-in-the-loop (PIL) simulation.

In this section...
“Enable SIL or PIL Code Coverage for a Model” on page 4-6
“Review the Coverage Results for Models in SIL or PIL Mode” on page 4-6
“Limitations” on page 4-8

Enable SIL or PIL Code Coverage for a Model
To record SIL or PIL code coverage for a model:

1 Ensure you have a supported compiler installed. For a list of supported compilers, see Supported
and Compatible Compilers.

2 In the Configuration Parameters dialog box, on the left pane, click Code Generation. From the
list, select Verification.

3 Under Code profiling, set Measure function execution times to Off.
4 Under Code coverage for SIL or PIL, set Third-party tool to None (use Simulink

Coverage).
5 Enable coverage for a model in SIL or PIL mode or a reference model in SIL or PIL mode. For

more information about enabling coverage, see “Specify Coverage Options” on page 3-2.
6 Run a SIL or PIL simulation.

Note The Coverage (Run) button in the Coverage toolstrip forces a Normal mode simulation
for the top-level model and does not yield SIL or PIL code coverage.

To run a SIL or PIL simulation:

a In the Simulink window, click Apps and then click SIL/PIL Manager.
b In the SIL/PIL tab, click Automated Verification > SIL/PIL Simulation Only.
c Click Run SIL/PIL.

Review the Coverage Results for Models in SIL or PIL Mode
To view the code coverage information in the Code pane, click the menu icon to the right of the
search box and select Show code coverage. If the option is disabled, then on the Coverage tab,
click Coverage Highlighting. The code displays highlighting and annotations that show code
coverage information. You can navigate from the code to the associated model blocks by using the
links in the line numbers, code elements, and comments.

4 Code Coverage

4-6

https://www.mathworks.com/support/requirements/supported-compilers.html
https://www.mathworks.com/support/requirements/supported-compilers.html

If you point your cursor at a coverage annotation, a tooltip with additional information appears.

If coverage is missing, you can click the Not covered link in the tooltip to open the Filter Explorer
pane of the Coverage Results Explorer with a new justification rule for the outcome you selected.

At the bottom of the Code view, Simulink Coverage shows a summary of the code coverage report.
Point your cursor at one of the listed metrics to view a tooltip with additional information.

 Code Coverage for Models in Software-in-the-Loop (SIL) Mode and Processor-in-the-Loop (PIL) Mode

4-7

Limitations
Coverage for models in SIL and PIL mode has these limitations:

• The model must meet the requirements listed in “Enable SIL or PIL Code Coverage for a Model”
on page 4-6.

• Code coverage results must not include external C/C++ files in read-only folders.
• The Coverage (Run) button in the Coverage toolstrip forces a Normal simulation and will not

yield SIL or PIL code coverage.
• The Code pane does not support annotations or tooltips for Modified Condition Decision Coverage

(MCDC) outcomes. As a result, you cannot justify these outcomes from the Code pane.
• The Code pane does not support creating exclusion filter rules. To create exclusion filter rules,

use the coverage report.

See Also

Related Examples
• “Custom Toolchain Directives Required for Code Coverage and Execution Profiling” (Embedded

Coder)
• “Software-in-the-Loop Code Coverage” on page 4-21
• “SIL/PIL Manager Verification Workflow” (Embedded Coder)

4 Code Coverage

4-8

Collect Code Coverage Metrics with Simulink Coverage

This example shows how to collect code coverage metrics during a software-in-the-loop (SIL) or
processor-in-the-loop (PIL) simulation with Simulink® Coverage™.

You use the code coverage tool and code coverage report to view the recorded code coverage for a
SIL simulation.

In this example, you measure model coverage during a simulation in normal mode, repeat the same
simulation in SIL mode, and compare the recorded metrics from both simulations.

Compare model coverage and code coverage results by using the hyperlinks in the model coverage
and code coverage reports.

For more examples of measuring SIL and PIL simulations, see “Test Generated Code with SIL and PIL
Simulations” (Embedded Coder).

 Collect Code Coverage Metrics with Simulink Coverage

4-9

Initial Setup

Open the model.

model = 'SILTopModel';
close_system(model,0);
open_system(model);

Remove any existing build folders.

buildFolder = RTW.getBuildDir(model);
if isfolder(buildFolder.BuildDirectory)
 rmdir(buildFolder.BuildDirectory,'s');
end

Configure the model for coverage collection.

set_param(model, 'CovEnable', 'on')
clear covCumulativeData

Set up the input data.

T = 0.1; % sample time
[ticks_to_count, reset, counter_mode, count_enable, ...
 counter_mode_values_run1, counter_mode_values_run2, ...
 count_enable_values_run1, count_enable_values_run2] = ...
 SILTopModelData(T);

Run the First Simulation in Normal Mode

After the simulation completes, the model coverage report opens. To navigate from blocks in the
model to the corresponding sections of the coverage report, use the coverage display window.

counter_mode.signals.values = counter_mode_values_run1;
count_enable.signals.values = count_enable_values_run1;
set_param(model, 'SimulationMode', 'normal');

Use the Simulation Data Inspector to view and compare simulation results.

Simulink.sdi.view;
Simulink.sdi.clear;

Run the simulation.

simout_normal_run1 = sim(model, 'ReturnWorkspaceOutputs', 'on');

Highlight the model.

cvmodelview(simout_normal_run1.covdata);

Capture the results.

Simulink.sdi.createRun('Run 1 (normal mode)', 'namevalue',...
 {'simout_normal_run1'}, {simout_normal_run1});

4 Code Coverage

4-10

Run the Second Simulation in Normal Mode

For the first simulation, the report shows that the model achieved less than 100% MCDC coverage.
Run a second simulation with different input signals to increase the level of MCDC coverage to 100%.
The model coverage report is configured to show cumulative coverage across both simulation runs.

counter_mode.signals.values = counter_mode_values_run2;
count_enable.signals.values = count_enable_values_run2;
set_param(model, 'SimulationMode', 'normal');

simout_normal_run2 = sim(model, 'ReturnWorkspaceOutputs', 'on');

cvmodelview(simout_normal_run2.covdata);

Simulink.sdi.createRun('Run 2 (normal mode)', 'namevalue',...
 {'simout_normal_run2'}, {simout_normal_run2});

Configure the Model to Measure Code Coverage

Before running a SIL simulation, configure the model to collect code coverage metrics.

coverageSettings = get_param(model, 'CodeCoverageSettings');
coverageSettings.CoverageTool = 'Simulink Coverage';
coverageSettings.TopModelCoverage = 'on';
set_param(model, 'CodeCoverageSettings', coverageSettings);

Run the First Simulation in SIL Mode

You can use the same input signals in the SIL simulation that you used during the first simulation run
in normal mode.

Run the first simulation in SIL mode.

counter_mode.signals.values = counter_mode_values_run1;
count_enable.signals.values = count_enable_values_run1;
set_param(model, 'SimulationMode', 'software-in-the-loop');
set_param(model, 'CodeExecutionProfiling', 'off');
set_param(model, 'CodeProfilingInstrumentation', 'off');
simout_sil_run1 = sim(model, 'ReturnWorkspaceOutputs', 'on');

Starting build procedure for: SILTopModel
Successful completion of build procedure for: SILTopModel

Build Summary

Top model targets built:

Model Action Rebuild Reason
===
SILTopModel Code generated and compiled. Code generation information file does not exist.

1 of 1 models built (0 models already up to date)
Build duration: 0h 0m 21.597s
Preparing to start SIL simulation ...
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
Updating code generation report with SIL files ...
Starting SIL simulation for component: SILTopModel

 Collect Code Coverage Metrics with Simulink Coverage

4-11

Stopping SIL simulation for component: SILTopModel
Completed code coverage analysis

cvmodelview(simout_sil_run1.covdata);
Simulink.sdi.createRun('Run 1 (SIL mode)', 'namevalue',...
 {'simout_sil_run1'}, {simout_sil_run1});

When the simulation completes, view the code coverage results on the model by using coverage
highlighting. To see the SIL code coverage summary for a model element, place your cursor over the
model element.

4 Code Coverage

4-12

You can also view the code coverage results in the HTML code coverage report. The summary section
shows that all functions have been called, but the SIL simulation run did not achieve full coverage for
decision, condition, or MCDC coverage.

cvhtml('codecovreport',simout_sil_run1.covdata);

 Collect Code Coverage Metrics with Simulink Coverage

4-13

To navigate to the corresponding model elements in the block diagram, use the hyperlinks in the code
coverage report.

Run the Second Simulation in SIL mode

Use the same input signals in the SIL simulation that you used in the second simulation run in normal
mode.

counter_mode.signals.values = counter_mode_values_run2;
count_enable.signals.values = count_enable_values_run2;
set_param(model, 'SimulationMode', 'software-in-the-loop');
set_param(model, 'CodeExecutionProfiling', 'off');
set_param(model, 'CodeProfilingInstrumentation', 'off');
simout_sil_run2 = sim(model, 'ReturnWorkspaceOutputs', 'on');

Starting build procedure for: SILTopModel
Generated code for 'SILTopModel' is up to date because no structural, parameter or code replacement library changes were found.
Successful completion of build procedure for: SILTopModel

Build Summary

4 Code Coverage

4-14

Top model targets built:

Model Action Rebuild Reason
==
SILTopModel Code compiled. Compilation artifacts were out of date.

1 of 1 models built (0 models already up to date)
Build duration: 0h 0m 3.4218s
Preparing to start SIL simulation ...
Starting SIL simulation for component: SILTopModel
Stopping SIL simulation for component: SILTopModel
Completed code coverage analysis

Simulink.sdi.createRun('Run 2 (SIL mode)', 'namevalue',...
 {'simout_sil_run2'}, {simout_sil_run2});

Highlight the model using the cumulative coverage from both SIL mode simulations to see that the
generated code from the model achieved full coverage.

cvmodelview(simout_sil_run1.covdata + simout_sil_run2.covdata);

 Collect Code Coverage Metrics with Simulink Coverage

4-15

Compare Metrics from the Normal and SIL Simulations

The Simulation Data Inspector opens automatically after each run, which allows you to view and
analyze the results. To confirm that the logged signals for the SIL and normal mode runs are
identical, review the information in the Compare and Inspect panes.

4 Code Coverage

4-16

Specify Code Coverage Options
Simulink Coverage provides three modes of code coverage analysis.

In this section...
“Models with Custom C/C++ Code Blocks” on page 4-17
“Models with Software-in-the-Loop and Processor-in-the-Loop Mode Blocks” on page 4-17
“Models with MATLAB Function Blocks” on page 4-18

For general coverage options, see “Specify Coverage Options” on page 3-2.

Models with Custom C/C++ Code Blocks
You can collect code coverage for custom code blocks in your model, such as S-Functions and C
Caller blocks. Simulink Coverage reports custom C/C++ code blocks in a code coverage report, even
if you run your model in normal simulation mode.

You need to configure an S-Function block for coverage. For more information, see “Coverage for
Custom C/C++ Code in Simulink Models” on page 5-72.

Models with Software-in-the-Loop and Processor-in-the-Loop Mode
Blocks
You can collect code coverage for a model or model reference when you set the Simulation mode
parameter to Software in the Loop (SIL). There are a few configuration parameters that you
must set to allow coverage analysis of the generated code from your model:

1 In the Modeling tab, click Model Settings to open the Configuration Parameters dialog box.
2 In the Code Generation pane set the System target file in the Target selection section to

ert.tlc.
3 In the left pane, expand the Code Generation node. Select Verification.
4 In the Code coverage for SIL or PIL section, set Third-party tool to:

• None (use Simulink Coverage)
• BullseyeCoverage
• LDRAcover or LDRA tool suite

BullseyeCoverage and the LDRA tool suite are third-party tools supported by Embedded Coder. For
more information about third-party code coverage tool support, see “Code Coverage Tool Support”
(Embedded Coder). To set code coverage options, click Configure. If you set Third-party tool to
None (use Simulink Coverage), then clicking Configure opens the Coverage pane.

Using Simulink Coverage for code coverage means that you can analyze coverage results, justify
missing coverage, and generate test cases from within the Simulink environment.

 Specify Code Coverage Options

4-17

Models with MATLAB Function Blocks
When you record coverage for models containing MATLAB Function blocks, the model coverage
report includes the MATLAB code inside a MATLAB function block, but a separate code coverage
report reports the external MATLAB files called by the MATLAB Function block.

To include MATLAB Function blocks in your analysis:

1 In the Simulink Editor, select Model Settings on the Modeling tab.
2 In the Configuration Parameters dialog box, click Coverage. Under Include in analysis, select

MATLAB files.

See Also

More About
• “Create and Run Test Cases” on page 5-2
• “Types of Coverage Reports” on page 6-2
• “View Coverage Results for Custom C/C++ Code in S-Function Blocks” on page 5-74
• “Coverage Filtering” on page 7-2

4 Code Coverage

4-18

Coverage for Models with Code Blocks and Simulink Blocks

This example shows how to record coverage for a model that contains a combination of code blocks
and other Simulink® blocks.

The model is a cruise control system that consists of test cases and input signals from a Signal Editor
block. The signals from the Signal Editor act as inputs to the Stateflow® chart
ComputeTargetSpeed, which engages or disengages the cruise control system and sets the target
speed, tspeed.

Configure Up the Model to Record Coverage

In the Simulink Editor, select Modeling > Model Settings. In the Code Generation pane, set the
System target file in the Target selection menu to ert.tlc. In the Verification tab of the Code
Generation pane, set the Code coverage for SIL or PIL parameter, to None (use Simulink
Coverage).

Double click the RejectDoublePress block to open the S-Function Builder block. In the S-
Function Builder tab, click the arrow beneath Build and select Enable support for coverage. To
build the S-Function, click Build.

Note that to build the S-Function, you must have a compiler installed. For more information on
supported compilers for various platforms, see Supported and Compatible Compilers.

Record Coverage

The Signal Editor block consists of eight signal groups with five signals each. In this example, you
simulate all the signal groups and record coverage.

In the Simulink® toolstrip, click Simulation > Prepare > Multiple Simulations. In the Multiple
Simulations pane, click the folder icon, then in the Select File to Open dialog, select
slvnvdemo_doublepress_sfun_ds.mldatx. In the Simulation tab, click Run All (Coverage). At
the end of the simulation, the Coverage Results Explorer opens, showing the results for the latest
coverage analysis. The blocks in the model are highlighted in different colors corresponding to the
level of coverage achieved by each block.

Review Results by Generating a Coverage Report

The Coverage Results Explorer offers several options for displaying and reporting coverage results.
Select the Not_Engaged_with_Enable group in the Current Cumulative Data tab of the left

 Coverage for Models with Code Blocks and Simulink Blocks

4-19

https://www.mathworks.com/support/requirements/previous-releases.html

pane. Click the Generate report link at the bottom of the Coverage Results Explorer to generate an
HTML coverage report. The coverage report lists model coverage for Simulink model blocks and code
coverage for code blocks. Scroll down to view the coverage metrics for the S-Function block in the
coverage report. Click the Detailed Report link to open the code coverage report for the S-Function
block. For more details on the code coverage report for S-Function blocks, see “View Coverage
Results for Custom C/C++ Code in S-Function Blocks” on page 5-74.

Justify Missing Coverage

In this example, you justify coverage for one input signal group by creating a coverage filter. In the
code coverage report for the S-Function block created in Review Results by Generating a Coverage
Report, scroll down to Decision/Condition 2.1 !(CoastSetSwIn[0] && AccelResSwIn[0]). This
condition is never False for the current test case.

Click the Justify or Exclude link under the detailed results for this condition. The Filter tab of the
Coverage Results Explorer opens, and the rule filtering this transition is added. Change the Mode for
this rule to Justified and enter a description for the Rationale, such as expression cannot be
false. Click Apply to apply the changes.

After you click Apply, the Generate report link becomes available. Click the link to generate the
report with the updated coverage filter. The new code coverage report for the RejectDoublePress
S-Function block lists the excluded condition under Objects Filtered from Coverage Analysis. The
detailed results for the condition !(CoastSetSwIn[0] && AccelResSwIn[0]) show that missing
coverage for this condition has been justified. The justified objects are treated as satisfied when
reporting coverage percentages and appear light blue in the Coverage Summary.

For more information on coverage filters, see “Coverage Filtering” on page 7-2.

See Also
“Types of Coverage Reports” on page 6-2 | “Creating and Using Coverage Filters” on page 7-11 |
“Coverage for Custom C/C++ Code in Simulink Models” on page 5-72

4 Code Coverage

4-20

Software-in-the-Loop Code Coverage

This example shows how to collect code coverage metrics from a model reference using software-in-
the-loop (SIL) mode.

Generate Code Coverage Results

The model slvnvdemo_counter_harness is a harness model that uses a Signal Editor block to
specify inputs for a model reference to the slvnvdemo_counter model.

The model is configured for coverage, but the simulation mode is set to Normal. In normal simulation
mode, you can only collect model coverage data. To collect software-in-the-loop coverage, use one of
the following methods:

• From a model reference, set the simulation mode for the referenced model in the block
parameters of the Model block. Click the Model block slvnvdemo_counter, then click the
Model Block tab. Set Simulation Mode, to Software-in-the-Loop (SIL). The corners of
the block icon turn black and (SIL) appears under the model name on the block.

In the Apps tab, click Coverage Analyzer. Then, on the Coverage tab, click Analyze Coverage.
Simulink Coverage® collects coverage for the generated code of the referenced subsystems that use
SIL simulation mode.

• Use the SIL/PIL Manager app to run the simulation. Use this approach when you want to collect
coverage on the top model and the referenced models, or when the Scope of coverage analysis

 Software-in-the-Loop Code Coverage

4-21

is set to Entire System. On the Apps tab, click SIL/PIL Manager. Click Run Verification.
Simulink Coverage® collects coverage for the generated code of the SIL/PIL simulation. Note that
if you want to collect coverage on the top model, the Analyze Coverage button always runs a
normal mode simulation and does not generate code coverage results.

For more information about configuring a model for coverage, see “Specify Coverage Options” on
page 3-2.

View the Coverage Results in Coverage Details

When the simulation finishes, Simulink® opens the Code and Coverage Details panes. You can view
only one of these panes at a time. The Code pane opens by default and contains the details of the
code generated from your model. At the bottom of the Code pane, click the Coverage Details tab.

The pane displays the message Coverage was not recorded for
slvnvdemo_counter_harness. This message appears because the model is configured to collect
coverage for the model reference slvnvdemo_counter and not the top model,

4 Code Coverage

4-22

slvnvdemo_counter_harness. Double click the model block slvnvdemo_counter to see
coverage results for this model reference.

Scroll to the top of the Coverage Details pane to see that this is the SIL mode coverage summary.

Click Details to view the Details section of the coverage report. This section lists the code coverage
organized by the source files, the functions called by those files, and the individual coverage objective
outcomes that make up the functions.

In the model, click on the Switch block called limit to see the Details By Model Object section of
the report, which lists the expressions and functions for each model object. For example, the Switch
block limit receives decision and statement code coverage on lines 48, 50, and 53 of the function
slvnvdemo_counter.c and the covered expression is rtb_inputGElower.

 Software-in-the-Loop Code Coverage

4-23

View the Coverage Results in Code View

You can also see coverage results in the code view created by Embedded Coder®. At the bottom of
the Coverage Details pane, click Code.

4 Code Coverage

4-24

Each line of code has an annotation that indicates whether it has full coverage. For example, line 40
has the following annotations:

• ^S beneath the statement rtb_inputGElower, colored in green, indicates that the line executed
and receives full statement coverage.

• ^tf beneath the condition rtb_input >= *rtu_lower, colored in green, indicates that both the
true and false cases of the condition executed and the condition has full condition coverage.

For more information about code view annotations, see “Code Coverage for Models in Software-in-
the-Loop (SIL) Mode and Processor-in-the-Loop (PIL) Mode” (Embedded Coder).

Create and View a Standalone Coverage Report

To create a standalone code coverage report, in the Coverage tab, click Generate Report. The code
coverage report contains a section that displays the generated code.

 Software-in-the-Loop Code Coverage

4-25

Each code statement and logic block contains a comment or set of comments that describe the source
block from which the code was generated. Each comment also contains a link that brings you back to
the model and to aid in model-to-code mapping.

See Also

Related Examples
• “Specify Coverage Options” on page 3-2

4 Code Coverage

4-26

• “Specify Code Coverage Options” on page 4-17
• “Code Coverage for Models in Software-in-the-Loop (SIL) Mode and Processor-in-the-Loop (PIL)

Mode” (Embedded Coder)
• “Code Coverage Report” on page 6-40

 Software-in-the-Loop Code Coverage

4-27

Use Justification Rules to Filter Code Coverage Outcomes

This example shows how to filter code coverage outcomes in the coverage report after collecting
coverage for a model in software-in-the-loop (SIL) or processor-in-the-loop (PIL) mode.

Generate Code Coverage Data

First, put the model into SIL/PIL mode. In the Simulink® window, click Apps and, under Code
Verification, Validation, and Test, click SIL/PIL Manager. On the SIL/PIL tab, change
Automated Verification to SIL/PIL Simulation Only.

In this example model, coverage is enabled by default. If you are using your own model, enable
coverage in the Configuration Parameters window. For more information about coverage settings,
see “Specify Coverage Options” on page 3-2.

Simulate the model and collect coverage by clicking Run SIL/PIL. When you simulate the model, a
docked pane opens next to the Simulink® model. Click the Coverage Details tab to see the code
coverage report.

4 Code Coverage

4-28

Starting build procedure for: slvnvdemo_counter
Successful completion of build procedure for: slvnvdemo_counter

Build Summary

Top model targets built:

Model Action Rebuild Reason
===
slvnvdemo_counter Code generated and compiled. Code generation information file does not exist.

1 of 1 models built (0 models already up to date)
Build duration: 0h 0m 40.028s
Preparing to start SIL simulation ...
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
Updating code generation report with SIL files ...
Starting SIL simulation for component: slvnvdemo_counter
Stopping SIL simulation for component: slvnvdemo_counter
Completed code coverage analysis

Justify Missing Code Coverage Using Coverage Filters

If your model has unreachable logic that is intentional, such as defensive model design or exception
handling, you can justify this missing coverage using coverage filters.

 Use Justification Rules to Filter Code Coverage Outcomes

4-29

The Summary section of the code coverage report links to each source file and function. In this
example, click slvnvdemo_counter_step. The code coverage report jumps to the function named
slvnvdemo_counter_step. In section 2.1, you can see that both conditions inside the decision (!
(slvnvdemo_counter_U.upper >=z rtb_input)) || (!rtb_inputGElower)| are false for all time
steps.

To justify a missing coverage outcome, in the Conditions analyzed table, next to the condition
slvnvdemo_counter_U.upper >= rtb_input, click the Add justification rule icon. The
Coverage Results Explorer opens and creates a filter rule to justify the false outcome of the
condition slvnvdemo_counter_U.upper >= rtb_input.

4 Code Coverage

4-30

In the Filter Editor pane, set the Name field to myCodeCovFilter. You can set the Description field
to any descriptive text. The Filter Rules section has two tabs, Model and Code. In this case, the
filter appears on the Code tab because you are filtering from the code coverage report. You can
double-click the Rationale field to add a reason, for example "Expected result."

Near the top of the Filter Editor, under the Filename field, click Save as. In the Save filter window,
name the filter file myCodeCovFilter. Note that the filter name and the filter file name do not have
to be the same.

When you save the filter, the code coverage report updates and displays the justified outcome.

 Use Justification Rules to Filter Code Coverage Outcomes

4-31

Justify the false case of the second condition by clicking the Add justification rule filter next to
rtb_inputGElower and following the steps listed above. This second rule is added to the same filter
file that you created for the first rule.

You can create a new code coverage report after applying coverage filters by clicking Current
Cumulative Data (H) in the left pane of the Coverage Results Explorer, and then clicking Generate
report at the bottom of the Coverage Data pane. This link creates a standalone report which you
can use for archiving or sharing reports.

4 Code Coverage

4-32

The summary section of the code coverage report reflects the improved condition coverage due to the
filter rules.

Additionally, the code coverage report now shows a section titled Objects Filtered from Coverage
Analysis that displays the filter rules and rationales.

 Use Justification Rules to Filter Code Coverage Outcomes

4-33

See Also

Related Examples
• “Access, Manage, and Aggregate Coverage Results” on page 3-7
• “Create, Edit, and View Coverage Filter Rules” on page 7-6
• “Creating and Using Coverage Filters” on page 7-11

4 Code Coverage

4-34

View and Filter Code Coverage Results Using the Code Pane

This example shows how to view code coverage results and justify code coverage outcomes directly
from the Code pane in Simulink®.

 View and Filter Code Coverage Results Using the Code Pane

4-35

4 Code Coverage

4-36

Configure Coverage Settings and Analyze the Model

First, ensure that coverage is enabled for the model. In the Simulink toolstrip, on the Modeling tab,
click Model Settings. In the Configuration Parameters dialog box, in the Coverage pane, select
Enable Coverage Analysis. Then set Structural coverage level to Condition Decision.

To run a simulation in software-in-the-loop (SIL) or processor-in-the-loop (PIL) mode, you can use the
SIL/PIL Manager app. In the Simulink toolstrip, on the Apps tab, click SIL/PIL Manager.

In the SIL/PIL tab, set Mode to SIL/PIL Simulation Only. Click Run SIL/PIL.

View Coverage Results

When the simulation finishes, the Code pane displays the generated code overlayed with coverage
annotations. The Code pane opens when you run the simulation from the SIL/PIL Manager app. You
can open the code pane manually by opening the Embedded Coder app from the Apps tab and
clicking View Code.

If you click a block, Simulink highlights the lines of generated code relevant to that block. For
example, click the Multiport Switch block to highlight the code that starts at line 67.

The annotations in the code pane point at a specific coverage objective, and the color of each
annotation indicates the completeness of the coverage analysis. On line 35, the red line to the left of
the line number indicates that the objective on line 35 has 0% coverage. In this case, there is only one
coverage objective on the line, but the line color gives a quick summary of all coverage objectives on

 View and Filter Code Coverage Results Using the Code Pane

4-37

that line. Point your cursor at the carat underneath the start of the function name to view a tooltip
with more information.

The tooltip clarifies that the missing coverage belongs to the function call metric, and the function on
line 35 was not called during code execution.

On line 50, the green line indicates that the objective highlighted has 100% coverage. For objectives
with complete or partial coverage, the carat annotations have additional text to indicate which
objectives are satisfied. For example, line 50 displays ^Fcn. Point your cursor at this annotation to
view another tooltip with additional information.

The tooltip indicates that the function on line 50 is called during code execution and has complete
function call coverage.

Similarly, ^S indicates statement coverage.

^Sw indicates switch label, or the default case of a switch statement.

If a coverage metric contains more than one possible outcome, the annotation shows all satisfied
outcomes. For example, a condition with partial coverage shows a yellow ^t or ^f depending on
whether the true or false case is satisfied, respectively. If both outcomes are satisfied, the annotation
shows a green ^tf. The tooltip shows all outcomes, even if they are not satisfied. Scroll to line 64 and
point your cursor to the annotation ^t.

4 Code Coverage

4-38

The annotation and tooltip indicate that the true outcome of the condition is satisfied, but the false
case did not occur during code execution.

Justify A Coverage Outcome

Suppose the false case of the condition slcoverage_demo_smoke_U.In1 <=
slcoverage_demo_smoke_U.In2 on line 64 is not relevant in this test. You can justify this outcome
from the Code pane by clicking the Not Covered link in the annotation tooltip.

When you click the tooltip link, the Coverage Results Explorer opens to the Filter Editor pane and
creates a new rule that justifies the outcome you selected. In the Filter Editor pane, enter
codePaneFilter into the Name field. Under the filter rules, set Rationale to not relevant. Click
Apply, and in the Save dialog, click OK. When you save the filter and return to the model, click Code
to return to the Code pane.

On line 64, the yellow annotation ^t changes to cyan to indicate that the true case is satisfied and the
false case is justified. Additionally, the yellow line to the left of the line number changes to cyan to
indicate that the coverage outcome on that line contains a justification filter rule.

When you filter an outcome using the tooltip link in the Code pane, Simulink Coverage creates a
justification rule. You cannot change this to an exclusion rule. To create an exclusion filter rule, use
the Justify or Exclude links in the Coverage Details pane.

Exclude A Coverage Outcome

At the bottom of the Code pane, click Coverage Details. Scroll section 2.2 Decision rtu_In1 <
-0.5 (line 40). Click Justify or Exclude.

 View and Filter Code Coverage Results Using the Code Pane

4-39

The Filter Editor pane of the Coverage Results Explorer opens and creates a new exclusion rule in
the filter you created earlier.

4 Code Coverage

4-40

In the model, at the bottom of the Coverage Details pane, click Code. On line 40, the gray carat
points to the exluded coverage objective.

View Multiple Outcomes on a Single Line of Code

Open the slcoverage_demo_smoke2.slx model.

 View and Filter Code Coverage Results Using the Code Pane

4-41

Open the SIL/PIL app by clicking SIL/PIL Manager in the Apps tab. Click Run SIL/PIL.

In the Code pane, scroll to line 79. This line contains two annotations stacked on one another,
because the line of code contains a decision composed of two conditions. The annotation for the
decision displays next to the first condition.

4 Code Coverage

4-42

The uppercase yellow ^F refers to the decision slcoverage_demo_smoke2_U.In3 &&
slcoverage_demo_smoke2_U.In4, and the lowercase yellow ^f refers to the first condition in the
decision, slcoverage_demo_smoke2_U.In3. Point to the uppercase ^F to view the decision tooltip.

You can see that the false case is satisfied, but the true case of the decision did not occur during code
execution. If you also look at the condition tooltip, you see the same results. Now, point to the carat
on line 80 to view the tooltip for the second condition, slcoverage_demo_smoke2_U.In4.

This tooltip is consistent with the red bar at the left of the line number, which indicates that this
condition receives 0% condition coverage. The reason this condition is not evaluated is due to logical
short circuiting. Because the first condition is false each time the code executes and the decision is
an && operator, the decision is false, so the second condition does not need to be evaluated.

Filter Multiple Outcomes on a Single Line of Code

In the tooltip for the condition ^f, click the link Not covered. In the Filter Editor pane of the
Coverage Results Explorer, set Name to codePaneFilter2 and set Rationale to Not relevant.
Click Apply. In the dialog that appears, click Save. At the bottom of Coverage Details, click Code.
At line 79, the yellow bar to the left of the line number remains yellow because there is still
unsatisfied and unjustified coverage on this line, but the yellow ^f changes to cyan.

Limitations

Displaying and filtering modified condition decision coverage (MCDC) outcomes is not supported
from the Code pane. To view and filter MCDC outcomes for code coverage, use the Coverage
Details pane or the coverage report.

 View and Filter Code Coverage Results Using the Code Pane

4-43

Creating and applying exclusion rules is not supported from the Code pane, but you can view
exclusions rules that you apply using the Coverage Details pane or by loading a filter using the
Coverage Results Explorer.

See Also

Related Examples
• “Code Coverage for Models in Software-in-the-Loop (SIL) Mode and Processor-in-the-Loop (PIL)

Mode” on page 4-6
• “Software-in-the-Loop Code Coverage” on page 4-21
• “Creating and Using Coverage Filters” on page 7-11

4 Code Coverage

4-44

Coverage Collection During Simulation

• “Create and Run Test Cases” on page 5-2
• “Modified Condition and Decision Coverage (MCDC) Definitions in Simulink Coverage”

on page 5-3
• “Modified Condition and Decision Coverage in Simulink Design Verifier” on page 5-6
• “Logical Operator Cascade Patterns” on page 5-9
• “Analyzing MCDC for Cascaded Logic Blocks” on page 5-10
• “View Coverage Results in Simulink Canvas” on page 5-21
• “Model Coverage for Multiple Instances of a Referenced Model” on page 5-25
• “Obtain Cumulative Coverage for Reusable Subsystems” on page 5-33
• “Trace Coverage Results to Requirements” on page 5-37
• “Assess Coverage Results from Requirements-Based Tests” on page 5-40
• “Trace Coverage Results to Associated Test Cases” on page 5-42
• “Model Coverage for MATLAB Functions” on page 5-46
• “Model Coverage Reports for MATLAB Functions” on page 5-49
• “Coverage for MATLAB Function Blocks” on page 5-57
• “Coverage for Custom C/C++ Code in Simulink Models” on page 5-72
• “View Coverage Results for Custom C/C++ Code in S-Function Blocks” on page 5-74
• “Coverage for S-Functions” on page 5-78
• “Model Coverage for Stateflow Charts” on page 5-81
• “Types of Coverage for Stateflow Charts” on page 5-91
• “Model Coverage Display for Stateflow Charts” on page 5-97
• “Model Coverage for Stateflow Atomic Subcharts” on page 5-100
• “Model Coverage for Stateflow Truth Tables” on page 5-102
• “Model Coverage for Variant Blocks” on page 5-106
• “Collect Coverage for Multiple Simulations by Using Design Studies” on page 5-112

5

Create and Run Test Cases
To create and run test cases, model coverage provides the MATLAB commands cvtest and cvsim.
The cvtest command creates test cases that the cvsim command runs.

You can also run the coverage tool interactively:

1 Open the ExtractingDetailedCoverageDataExample example using openExample.

openExample('slcoverage/ExtractingDetailedCoverageDataExample');
2 Open the slvnvdemo_cv_small_controller model.
3 In the Simulink Editor, select Model Settings on the Modeling tab.

In the Configuration Parameters dialog box, on the “Coverage Pane” on page 3-2, select Enable
coverage analysis, which enables the coverage settings.

4 Under Coverage metrics, select the types of coverage that you want to record in the coverage
report. Click OK.

5 Simulate the model.

Simulink Coverage saves coverage data for the current run in the workspace object covdata and
cumulative coverage data in covCumulativeData, by default if you simulate using the Run
button. Simulink Coverage also saves these results to a .cvt file by default. At the end of the
simulation, the data appears in an HTML report that opens next to your model. For more
information on coverage data settings, see “Specify Coverage Options” on page 3-2.

You cannot run simulations if you select both the model coverage reporting and acceleration
options. If you set the simulation mode to Accelerator, Simulink Coverage does not record
coverage.

When you perform coverage analysis, you cannot select both block reduction and conditional
branch input optimization, because they interfere with coverage recording. See “Simulink
Optimizations and Model Coverage” on page 1-11 for more information.

5 Coverage Collection During Simulation

5-2

Modified Condition and Decision Coverage (MCDC) Definitions
in Simulink Coverage

Simulink Coverage by default uses the masking modified condition and decision coverage (MCDC)
definition for recording MCDC coverage results. Although you can change the MCDC definition that
Simulink Coverage uses during analysis to the unique-cause MCDC definition, there are some
differences in how Simulink Coverage records coverage for models depending on which definition you
use.

In this section...
“Differences between Masking MCDC and Unique-Cause MCDC in Simulink Coverage Coverage
Analysis” on page 5-3
“Certification Considerations for MCDC Coverage” on page 5-4
“Setting the (MCDC) Definition Used for Simulink Coverage Coverage Analysis” on page 5-4
“Modified Condition and Decision Coverage in Simulink Design Verifier” on page 5-5

Differences between Masking MCDC and Unique-Cause MCDC in
Simulink Coverage Coverage Analysis
Masking MCDC accounts for the masking of conditions in subexpressions, allowing for an increased
number of satisfied MCDC objectives compared to the unique-cause definition of MCDC. As a result,
some Simulink models that receive less than complete MCDC coverage using the unique-cause MCDC
definition receive increased coverage when using the masking MCDC definition. Consider the
following example, where two inputs to a Stateflow chart, condition A and condition C, cannot change
independently:

This input dependence results in dependent conditions for the expression contained within the
Stateflow chart:

For the expression (A||B)&&(C||D), changing the value of condition C also changes the value of
condition A. Due to the interdependence of conditions A and C, unique-cause MCDC for condition C
cannot be achieved:

 Modified Condition and Decision Coverage (MCDC) Definitions in Simulink Coverage

5-3

However, masking MCDC for condition C can be achieved, because masking MCDC allows the value
of condition A to change in the independence pair for condition C, as long as the sub-expression (A||
B) remains true:

Certification Considerations for MCDC Coverage
DO-248C Discussion Paper #13 "Discussion of Statement Coverage, Decision Coverage and Modified
Condition/Decision Coverage" states that masking MCDC is acceptable for meeting the MCDC
objective of DO-178B certification.

Setting the (MCDC) Definition Used for Simulink Coverage Coverage
Analysis
By default, Simulink Coverage uses the masking MCDC definition during coverage analysis. There are
two ways to change the MCDC definition used for Simulink Coverage coverage analysis:

Use the Model Configuration Parameters to Set the MCDC Definition Used

1 Open the Configuration Parameters dialog box.
2 Set the CovMcdcMode parameter to Masking or Unique-Cause.

Use the cvtest Object to Set the MCDC Definition Used

Create a cvtest object for your model to set the mcdcMode to 'Masking' or 'UniqueCause':

cvt = cvtest(model)
cvt.options.mcdcMode = 'UniqueCause'
covdata = cvsim(cvt)

5 Coverage Collection During Simulation

5-4

Modified Condition and Decision Coverage in Simulink Design Verifier
Setting CovMcdcMode to 'UniqueCause' can result in differences between MCDC reporting in
Simulink Coverage and test generation in Simulink Design Verifier. Simulink Design Verifier always
uses the masking MCDC definition for test case generation. For more information, see “Modified
Condition and Decision Coverage in Simulink Design Verifier” on page 5-6.

See Also

More About
• “MCDC” (Simulink Design Verifier)

 Modified Condition and Decision Coverage (MCDC) Definitions in Simulink Coverage

5-5

Modified Condition and Decision Coverage in Simulink Design
Verifier

Depending on the settings you apply for Simulink Coverage coverage recording, there can be a
difference between the definition of modified condition and decision (MCDC) coverage used for model
coverage analysis in Simulink Coverage and the definition used for test case generation analysis in
Simulink Design Verifier.

MCDC Definitions for Simulink Coverage and Simulink Design Verifier
Simulink Design Verifier and Simulink Coverage represent MCDC objectives in two different ways:

• Simulink Coverage treats each condition of a logical expression as an MCDC objective.
• Simulink Design Verifier treats the true and false halves of each independence pair as separate

MCDC objectives.

The Simulink Design Verifier Results window shows Justified for any justified MCDC objectives. Click
on the corresponding View link to see the filter rule in the Simulink Design Verifier Analysis Filter
window.

Unsatisfiable or undecided MCDC objectives include a Justify link. Click on this link to create a
corresponding filter rule. Because every MCDC objective in Simulink Coverage corresponds to two
MCDC objectives in Simulink Design Verifier, the Simulink Design Verifier MCDC objectives are
justified in pairs.

For example, in the image below, when you click on the Justify link for the MCDC expression
expression for output with input port 4 false, creates a filter rule that justifies this
MCDC objective as well as the MCDC objective for when that expression is true.

Simulink Design Verifier always uses the masking MCDC definition for test case generation. By
default, Simulink Coverage also uses the masking MCDC definition when recording coverage.
However, if you set the CovMcdcMode model configuration parameter to 'UniqueCause', Simulink
Coverage instead uses the unique-cause MCDC definition when recording coverage. For information

5 Coverage Collection During Simulation

5-6

on the differences between the masking MCDC definition and the unique-cause MCDC definition, see
“Modified Condition and Decision Coverage (MCDC) Definitions in Simulink Coverage” on page 5-3.

Setting the CovMcdcMode model configuration parameter to 'UniqueCause' can result in
differences between MCDC reporting in Simulink Coverage and test generation in Simulink Design
Verifier. An example of this difference can be seen in analysis results for logical expressions
containing a mixture of AND and OR operators, as in this Stateflow transition.

Given that A, B, and C are each separate inputs, there are five possible ways to evaluate the condition
on the Stateflow transition, shown in the following table.

 A B C (A && B) || C
1 F x F F
2 F x T T
3 T F F F
4 T F T T
5 T T x T

Satisfying MCDC for a Boolean variable requires a pair of condition evaluations, showing that a
change in that variable alone changes the evaluation of the entire expression. In this example, MCDC
can be satisfied for C with either the pair 1, 2 or the pair 3, 4. In both of those cases, the value of the
expression changed because the value of C changed, while all other variable values stayed the same.

Each pair has a different set of values for A and B which are held constant, but each pair contains one
evaluation where C and out are true and one evaluation where C and out are false. To satisfy MCDC
for C, Simulink Design Verifier test generation analysis accepts any pair containing one evaluation of
true values and one evaluation of false values for C and out. In this example, Simulink Design Verifier
test generation analysis accepts not only pair 1, 2 and pair 3, 4 but also pair 1, 4 and pair 2, 3.
Simulink Coverage model coverage analysis using the unique-cause MCDC definition is satisfied only
by pair 1, 2 or by pair 3, 4.

The preceding example assumes that A, B, and C are all separate inputs. When input A is constrained
to be the same value as C, as in this model, only a subset of condition evaluations are possible.

 Modified Condition and Decision Coverage in Simulink Design Verifier

5-7

This subset of condition evaluations for the Stateflow transition is shown in the following table.

 A B C (A && B) || C
1 F x F F
4 T F T T
5 T T x T

Evaluations 2 and 3 are no longer possible, so neither pair 1, 2 nor pair 3, 4 is possible. As a result,
unique-cause MCDC for C can no longer be satisfied in Simulink Coverage model coverage analysis.
Since pair 1, 4 is still possible, however, Simulink Design Verifier test generation analysis reports that
MCDC for C is satisfiable.

The complexity of MCDC analysis for logical expressions with a mixture of AND and OR operators
causes this difference between results from Simulink Coverage set to unique-cause MCDC analysis
and Simulink Design Verifier. The default CovMcdcMode model configuration parameter value of
'Masking' does not cause this discrepancy. However, if you require the use of unique-cause MCDC
analysis in Simulink Coverage, you can minimize this effect by using the IndividualObjectives
test suite optimization for test generation analysis in Simulink Design Verifier For more information,
see the Tip section of “Test suite optimization” (Simulink Design Verifier).

See Also

More About
• “MCDC” (Simulink Design Verifier)

5 Coverage Collection During Simulation

5-8

Logical Operator Cascade Patterns

This model includes various patterns of cascaded Logical Operator blocks. This example illustrates
the criteria by which logic block cascades are identified for the purpose of model coverage analysis
for the MCDC metric.

 Logical Operator Cascade Patterns

5-9

Analyzing MCDC for Cascaded Logic Blocks

This example illustrates how Simulink® Coverage™ records the MCDC metric for a cascade of
Logical Operator blocks.

Example Model

In Simulink, there are various ways to implement Boolean logic, such as through the use of an if
statement in a MATLAB Function block, a conditional transition in a Stateflow Chart, or a
combination of multiple Logical Operator blocks connected together in a cascade.

The example model slvnvdemo_cv_logic_cascade implements the same Boolean expression
through the use of MATLAB code in a MATLAB Function block as well as with a cascade of Logical
Operator blocks.

Use the following command to open the model slvnvdemo_cv_logic_cascade:

open_system('slvnvdemo_cv_logic_cascade');

Open the MATLAB Function block to see the associated function.

open_system('slvnvdemo_cv_logic_cascade/MATLAB Function')

5 Coverage Collection During Simulation

5-10

In the MATLAB Function block, if (a && (b | | c)) is true, then the signal Data1 will be output;
otherwise, the signal Data2 is output.

Open the subsystem 'Logic Cascade' using the following command and note that this subsystem
implements the exact same logic using Logical Operator blocks and a Switch.

open_system('slvnvdemo_cv_logic_cascade/Logic Cascade');

Finally, open the Signal Editor and note that there are three combinations given for the Boolean
inputs a, b, and c. These combinations are FFF, TFT, and TTT.

open_system('slvnvdemo_cv_logic_cascade/Signal Editor');

 Analyzing MCDC for Cascaded Logic Blocks

5-11

Close the Signal Editor.

close_system('slvnvdemo_cv_logic_cascade/Signal Editor', 0);

Comparing MCDC Results in the Coverage Report

Simulate the model and generate a Coverage Report.

testObj = cvtest('slvnvdemo_cv_logic_cascade');
testObj.settings.decision = 1;
testObj.settings.condition = 1;
testObj.settings.mcdc = 1;
covdata = cvsim(testObj); % Simulate for coverage
cvhtml('exampleReport.html',covdata); % Generate Coverage Report

MCDC Results for MATLAB Function block

In the generated report, navigate to the details for the MATLAB Function block.

5 Coverage Collection During Simulation

5-12

The MCDC results for the if statement in the MATLAB Function block are as would be expected,
given the specified inputs.

MCDC Results for Logic Cascade

Next examine the results for the logic cascade. Recall that this combination of blocks implements the
same logic as the MATLAB code in the MATLAB Function block; therefore, we would expect that the
MCDC results would be the same, as well.

 Analyzing MCDC for Cascaded Logic Blocks

5-13

Let's first take a look at the upstream Or_Block.

Notice that the MCDC summary for this block has a link with the text "see And_Block", referring
to the Logical Operator at the root of the cascade. Click on this link to be taken to the section of the
report showing results for this block.

5 Coverage Collection During Simulation

5-14

The Logical Operator block at the root of the cascade (in this case And_Block) reports the MCDC
results for the entire cascade.

The details for the MCDC analysis of the cascade first show a link illustrating how many blocks are
included in the cascade. Clicking on the link "Includes 2 blocks" will bring up the model and
highlight the two blocks included in the cascade (Or_Block and And_Block).

This section of the report then shows the Boolean expression represented by the cascade, in this case
C1 && (C2 | | C3), where C1, C2, and C3 are the conditions which correspond to the three inputs to
the cascade. For each condition, the table illustrates the associated block and its input (shown in
parenthesis) as well as the MCDC result. These results indicate that the input combinations TTx, Fxx,

 Analyzing MCDC for Cascaded Logic Blocks

5-15

and TFT have all been exercised, but TFF has not. This matches the expectation given the inputs
generated by the Signal Editor (TTT, FFF, and TFT).

Furthermore, as expected, both the Boolean expression and MCDC results shown for this cascade
match what was shown for the if statement implementing the equivalent logic in the MATLAB
Function block.

Coverage Informer and Model Coloring

Display coverage results on the model using the following command:

cvmodelview(covdata);

As was shown in the Coverage Report, MCDC objectives are not recorded for the individual Logical
Operator blocks in a cascade; rather, MCDC objectives are recorded for the Boolean expression
represented by the combination of blocks in the cascade, and results are reported on the final block
in the cascade. The highlighting of the model reflects this, as well. Given the input combinations FFF,
TFT, and TTT for the three inputs a, b, and c, Or_Block receives full coverage, because all of the
block's Condition coverage objectives have been satisfied. However, because there are MCDC
objectives associated with this cascade which have not been satisfied, And_block (the final block in
the cascade) is highlighted in red.

Hover over And_block for more information.

5 Coverage Collection During Simulation

5-16

The tooltip correctly reports that this block does not receive full coverage, because some MCDC
objectives for the cascade are not satisfied.

Command Line

You can also retrieve the MCDC results for the logic block cascade from the MATLAB command line
using mcdcinfo. Again, MCDC objectives for the cascade will be found on the final block in the
cascade.

[coverage_casc, description_casc] = mcdcinfo(covdata, 'slvnvdemo_cv_logic_cascade/Logic Cascade/And_Block')
description_casc.condition(1)
description_casc.condition(2)
description_casc.condition(3)

coverage_casc =

 1 3

description_casc =

 struct with fields:

 text: 'C1 && (C2 || C3)'
 condition: [1x3 struct]
 isFiltered: 0

 Analyzing MCDC for Cascaded Logic Blocks

5-17

 filterRationale: ''
 justifiedCoverage: 0

ans =

 struct with fields:

 text: 'C1 (And_Block In1)'
 achieved: 1
 trueRslt: 'TFT'
 falseRslt: 'Fxx'
 isFiltered: 0
 isJustified: 0
 filterRationale: ''
 trueExecutedIn: []
 falseExecutedIn: []

ans =

 struct with fields:

 text: 'C2 (Or_Block In1)'
 achieved: 0
 trueRslt: 'TTx'
 falseRslt: '(TFF)'
 isFiltered: 0
 isJustified: 0
 filterRationale: ''
 trueExecutedIn: []
 falseExecutedIn: []

ans =

 struct with fields:

 text: 'C3 (Or_Block In2)'
 achieved: 0
 trueRslt: 'TFT'
 falseRslt: '(TFF)'
 isFiltered: 0
 isJustified: 0
 filterRationale: ''
 trueExecutedIn: []
 falseExecutedIn: []

Other blocks that are members of the cascade will not exhibit MCDC objectives.

[coverage_or, description_or] = mcdcinfo(covdata, 'slvnvdemo_cv_logic_cascade/Logic Cascade/Or_Block')

coverage_or =

 []

5 Coverage Collection During Simulation

5-18

description_or =

 []

Short-Circuiting of Boolean Expressions for MCDC

In example model slvnvdemo_cv_logic_cascade, coverage settings are set such that Logical
Operator blocks are treated as short-circuiting.

Due to this setting, when analyzing a cascade of Logical Operator blocks, the operators in the
corresponding Boolean expression are treated as short-circuiting for the purposes of MCDC. As
illustrated by the results shown above, this means that MCDC recognizes short-circuiting that occurs
both within and across Logical Operator blocks. As such, the MCDC results for the cascade of Logical
Operator blocks matches those of the if statement in the MATLAB Function block, as the latter is
always treated as short-circuiting.

Short-circuiting within a block

Notice that in the example above, the True Out MCDC objective outcome for C2 is TTx, indicating
that when C1 and C2 are both true, C3 is inconsequential due to short-circuiting within the
Or_Block.

Short-circuiting across multiple blocks

Furthermore, consider the False Out MCDC objective outcome for C1, Fxx. This outcome illustrates
how MCDC analysis recognizes short-circuiting across blocks. Because the first input to And_Block
is false, the second input is short-circuited. Subsequently, for the purposes of MCDC, this short-
circuits Or_Block (and both of its inputs) entirely. The short-circuiting behavior of MCDC for logic
block cascades occurs based on the precedence of operations in the corresponding Boolean
expression (regardless of the execution order of the Logical Operator blocks during simulation).

Non-short-circuiting Boolean expressions

You can also treat the Boolean expression represented by a cascade of Logical Operator blocks as
non-short-circuiting during MCDC analysis, provided that the masking definition of MCDC is being
used. To do so, set the parameter CovLogicBlockShortCircuit to "off" and ensure that
CovMcdcMode is set to "Masking". These are, in fact, the default settings for these parameters
when creating a new model.

Note, if CovLogicBlockShortCircuit is "off" and CovMcdcMode is set to "UniqueCause" then
the Logical Operator blocks in a cascade will be analyzed individually for the purposes of MCDC, and
MCDC for the Boolean expression represented by the cascade as a whole will not be calculated.

Notice that when the cascade in this example is not treated as short-circuiting, some MCDC
objectives are no longer satisfied by the given inputs.

set_param('slvnvdemo_cv_logic_cascade', 'CovLogicBlockShortCircuit', 'off');
set_param('slvnvdemo_cv_logic_cascade', 'CovMcdcMode', 'Masking');
covdata_non_sc = cvsim('slvnvdemo_cv_logic_cascade'); % Simulate for coverage with logic block short-circuiting off
cvhtml('exampleReport_non_sc.html',covdata_non_sc); % Generate Coverage Report

 Analyzing MCDC for Cascaded Logic Blocks

5-19

5 Coverage Collection During Simulation

5-20

View Coverage Results in Simulink Canvas

In this section...
“Overview of Model Coverage Highlighting” on page 5-21
“Enable Coverage Highlighting” on page 5-21
“View Coverage Details” on page 5-23

Overview of Model Coverage Highlighting
When you simulate a Simulink model, you can configure your model to provide visual results that
enable you to see which objects failed to record 100% coverage. After the simulation:

• In the model window, model objects are highlighted in certain colors according to what coverage
was recorded:

• Green indicates that an object received full coverage during simulation.
• Green with a dashed border indicates that an object had incomplete coverage that you
justified.

• Red indicates that an object received incomplete coverage.
• Gray with a dashed border indicates that you excluded an object from coverage.
• Objects with no color highlighting did not receive coverage.

• When you place your cursor over a colored object, you see a tooltip with details about the
coverage recorded for that block. For subsystems and Stateflow charts, the coverage tooltip lists
the summary coverage for all objects in that subsystem or chart. For other blocks, the coverage
tooltip lists specific details about the objects that did not receive 100% coverage.

The simulation highlights blocks that received these types of model coverage:

• “Execution Coverage (EC)” on page 1-4
• “Decision Coverage (DC)” on page 1-4
• “Condition Coverage (CC)” on page 1-4
• “Modified Condition/Decision Coverage (MCDC)” on page 1-5
• “Relational Boundary Coverage” on page 1-8
• “Saturate on Integer Overflow Coverage” on page 1-8
• “Objectives and Constraints Coverage” on page 1-7

Enable Coverage Highlighting

Your model will receive coverage highlighting if you simulate the model using the Run button. After
simulation, you can see which model objects received full, partial, or no coverage.

If you simulate without the Run button, or load coverage data, you can click Highlight model with
coverage results in the Results Explorer to enable model coverage highlighting. To open the results
explorer, in the Apps tab, select Coverage Analyzer. Then click Results Explorer. For more

 View Coverage Results in Simulink Canvas

5-21

information, see “Accessing Coverage Data from the Results Explorer” on page 3-7. You can also use
cvmodelview to enable model highlighting.

Highlighted Coverage Results

Examples of highlighted model objects in colors that correspond to the recorded coverage are:

Green: Full Coverage

The Switch block received 100% coverage, as indicated by the green highlighting and the information
in the coverage tooltip.

Green with Dashed Border: Justified Coverage

The Relational Operator block received justified coverage, as indicated by the green highlighting with
a dashed border and the information in the coverage tooltip.

Red: Partial Coverage

The shift_logic Stateflow chart received this coverage:

Inside the shift_logic Stateflow chart, the gear_state substate was never fourth.

5 Coverage Collection During Simulation

5-22

Two of the data ports in the Multiport Switch block were never executed.

Gray with Dashed Border: Filtered Coverage

The fuel_rate_control subsystem is highlighted in gray because it was excluded from coverage
recording.

No Coloring: Coverage Not Recorded

The Inport block is not highlighted because it does not receive coverage recording.

View Coverage Details
After you highlight coverage results on the model, you can view coverage details for each model
element in the Coverage Details window. To open the Coverage Details window, click the

 View Coverage Results in Simulink Canvas

5-23

Coverage Details icon in the lower-left corner of the Simulink block diagram, and then click Open
Coverage Details:

You can then click a model object to view its coverage details.

5 Coverage Collection During Simulation

5-24

Model Coverage for Multiple Instances of a Referenced Model
In this section...
“About Coverage for Model Blocks” on page 5-25
“Record Coverage for Multiple Instances of a Referenced Model” on page 5-25

About Coverage for Model Blocks
Model blocks do not receive coverage directly; if you set the simulation mode of the Model block to
Normal , SIL, or PIL, the Simulink Coverage software records coverage for the model referenced
from the Model block. If the simulation mode for the Model block is anything other than Normal,
SIL, or PIL, the software does not record coverage for the referenced model.

Your Simulink model can contain multiple Model blocks with the same simulation mode that
reference the same model. When the software records coverage, each instance of the referenced
model can be exercised with different inputs or parameters, possibly resulting additional coverage
data for the referenced model.

The Simulink Coverage software records coverage for all instances of the referenced model with the
same simulation mode and combines the coverage data for that referenced model in the final results.

Record Coverage for Multiple Instances of a Referenced Model
To see how this works, simulate a model twice. The first time, you record coverage for one Model
block in Normal simulation mode. The second time, you record coverage for two Model blocks in
Normal simulation mode. Both Model blocks reference the same model.

Record Coverage for the First Instance of the Referenced Model

Record coverage for one Model block.

1 Open your top-level model. For this example, use the sldemo_mdlref_datamngt model in the
“Introduction to Managing Data with Model Reference” example.

openExample('sldemo_mdlref_datamngt')

 Model Coverage for Multiple Instances of a Referenced Model

5-25

2

This model contains three Model blocks that reference the
sldemo_mdlref_counter_datamngt example model. The corners of each Model block indicate
the value of their Simulation mode parameter:

• Counter1 — Simulation mode: Normal
• Counter2 — Simulation mode: Accelerator
• Counter3 — Simulation mode: Accelerator

3 Configure your model to record coverage during simulation:

a In the Simulink Editor, select Model Settings on the Modeling tab.
b On the Coverage pane of the Configuration Parameters dialog box, select:

• Enable coverage analysis
• Referenced Models

c Click Select Models. In the Select Models for Coverage Analysis dialog box, you can select
only those referenced models whose simulation mode is Normal, SIL, or PIL. In this
example, only the first Model block that references sldemo_mdlref_counter_datamngt is
available for recording coverage.

5 Coverage Collection During Simulation

5-26

d Click OK to exit the Select Models for Coverage Analysis dialog box.
4 Click OK to save your coverage settings and exit the Configuration Parameters dialog box.
5 Simulate your model.

When the simulation is complete, the HTML coverage report opens. In this example, the
coverage data for the referenced model, sldemo_mdlref_counter_datamngt, shows that the
model achieved 69% coverage.

6 Click the hyperlink in the report for the referenced model.

The detailed coverage report for the referenced model opens, and the referenced model appears
with highlighting to show coverage results.

Note the following about the coverage for the Range Check subsystem in this example:

• The Saturate Count block executed 100 times. This block has four Boolean decisions. Decision
coverage was 50%, because two of the four decisions were never recorded:

• The decision input > lower limit was never false.
• The decision input >= upper limit was never true.

 Model Coverage for Multiple Instances of a Referenced Model

5-27

• The DetectOverflow function executed 50 times. This script has five decisions. The
DetectOverflow script achieved 60% coverage because two of the five decisions were never
recorded:

• The expression count >= CounterParams.UpperLimit was never true.
• The expression count > CounterParams.LowerLimit was never false.

5 Coverage Collection During Simulation

5-28

Record Coverage for the Second Instance of the Referenced Model

Record coverage for two Model blocks. Set the simulation mode of a second Model block to Normal
and simulate the model. In this example, the Counter2 block adds to the coverage for the model
referenced from both Model blocks.

1 In the Simulink Editor for your top-level model, right-click a second Model block and select
Block Parameters (ModelReference).

The Function Block Parameters dialog box opens.
2 Set the Simulation mode parameter to Normal.
3 Click OK to save your change and exit the Function Block Parameters dialog box.

 Model Coverage for Multiple Instances of a Referenced Model

5-29

The corners of the Model block change to indicate that the simulation mode for this block is
Normal, as in the example below.

4 To make sure that the software records coverage for both instances of this model:

a In the Simulink Editor, select Model Settings on the Modeling tab.
b On the Coverage pane, select Enable coverage analysis.
c Select Referenced Models and click Select Models.

In the Select Models for Coverage Analysis dialog box, verify that both instances of the
referenced model are selected. In this example, the list now looks like the following.

If you have multiple instances of a referenced model in Normal mode, you can choose to
record coverage for all of them or none of them.

d Click OK to close the Select Models for Coverage Analysis dialog box.
5 Simulate your model again.
6 When the simulation is complete, open the HTML coverage report.

In this example, the referenced model achieved 85% coverage. Note the following about the
coverage data for the Range Check subsystem:

5 Coverage Collection During Simulation

5-30

• The Saturate Count block executed 179 times. The simulation of the Counter2 block executed
the Saturate Count block an additional 79 times, for a total of 179 executions.

The decision input >= upper limit was true 21 times during this simulation, compared
to 0 during the first simulation. The fourth decision input > lower limit was still never
false. Three out of four decisions were recorded during simulation, so this block achieved
75% coverage.

• The DetectOverflow function executed 100 times. The simulation of the Counter2 block
executed the DetectOverflow function an additional 50 times.

The DetectOverflow function has five decisions. The expression count >=
CounterParams.UpperLimit was true 21 times during this simulation, compared to 0
during the first simulation. The expression count > CounterParams.LowerLimit was
never false. Four out of five decisions were recorded during simulation, so the
DetectOverflow function achieved 80% coverage.

 Model Coverage for Multiple Instances of a Referenced Model

5-31

5 Coverage Collection During Simulation

5-32

Obtain Cumulative Coverage for Reusable Subsystems

This example shows how to create and view cumulative coverage results for a model with a reusable
subsystem or a reusable Stateflow™ chart.

Simulink® Coverage™ provides cumulative coverage for multiple instances of identically configured:

• Subsystems
• Stateflow objects, such as charts or library-linked subcharts

To obtain cumulative coverage, add the individual coverage results programmatically or simulate the
model multiple times by using the Run button. You can get cumulative coverage results for multiple
instances across models and test harnesses by adding the individual coverage results. For more
information about cumulative coverage, see “Cumulative Coverage Data” on page 3-15.

Open Example Model

Open the slvnvdemo_cv_mutual_exclusion model.

modelName = "slvnvdemo_cv_mutual_exclusion";
open_system(modelName);

The slvnvdemo_cv_mutual_exclusion model has two instances of a reusable subsystem,
Subsystem 1 and Subsystem 2.

Analyze Decision Coverage

Create a Simulink.SimulationInput object for the model.

simIn = Simulink.SimulationInput(modelName);

Enable decision coverage analysis.

simIn = setModelParameter(simIn,"CovEnable","on");
simIn = setModelParameter(simIn,"CovMetricStructuralLevel","Decision");

Enable coverage for the entire system by using the CovScope parameter.

simIn = setModelParameter(simIn,"CovScope","EntireSystem");

 Obtain Cumulative Coverage for Reusable Subsystems

5-33

Enable the CovSaveSingleToWorkspaceVar parameter, and set the name of the coverage data
object to covData.

simIn = setModelParameter(simIn,"CovSaveSingleToWorkspaceVar","on");
simIn = setModelParameter(simIn,"CovSaveName","covData");

Simulate the model by using covInput as the input to sim. The simulation output object contains the
coverage data in a property that has the same name as the CovSaveName parameter. For this
example, use covData.

simOut = sim(simIn);
covData = simOut.covData;

Extract and View Subsystem Coverage Results

Extract the coverage data for Subsystem 1 using the cvdata.extract method. Then create an
HTML report for Subsystem 1 by using cvhtml.

covDataSubsys1 = extract(covData,modelName+"/Subsystem 1");
cvhtml("subsystem1",covDataSubsys1)

The report indicates that decision coverage is 50% for Subsystem 1. The true condition for enable
logical value is not satisfied.

Extract and view the coverage data for Subsystem 2.

covDataSubsys2 = extract(covData,modelName+"/Subsystem 2");
cvhtml("subsystem1",covDataSubsys2)

5 Coverage Collection During Simulation

5-34

The report indicates that decision coverage is 50% for Subsystem 2. The false condition for
enable logical value is not satisfied.

Generate Aggregated Subsystem Coverage Report

Combine the coverage results for the two simulations by using the + operator.

cumulativeCovData = covDataSubsys1 + covDataSubsys2;

% Create an HTML report for the cumulative decision coverage of |Subsystem
% 1| and |Subsystem 2|.

cvhtml('combinedData',cumulativeCovData)

 Obtain Cumulative Coverage for Reusable Subsystems

5-35

Even though the two different decision outcomes are satisfied by different instances of the subsystem,
the aggregated report combines the data from the two simulations and reports 100% decision
coverage.

Compare these results with the original coverage data, before using extract.

cvhtml('originalSystem',covData)

Because the coverage report for the system analysis displays Subsystem 1 and Subsystem 2
independently, it reports 50% decision coverage for the system, with 2 out of 4 total decision
outcomes satisfied. When you analyze the entire system, the coverage report does not look for
multiple instances of identical systems or Stateflow charts. If you want to combine the coverage data
for identical subsystems, you must do it manually.

Alternatively, you can use Simulink Test™ to aggregate unit-level coverage data into the system level.
See “Aggregate Unit-Level Coverage Data into Top-Level Model Coverage” on page 5-42.

5 Coverage Collection During Simulation

5-36

Trace Coverage Results to Requirements
If you run test cases in Simulink Test that are linked to requirements in Requirements Toolbox, the
aggregated coverage report details the requirements implemented by each model element and the
tests that verify those requirements.

Prerequisites for Tracing Requirements Links
To view linked requirements details in your coverage report, you must:

• Link to test cases from requirements in Requirements Toolbox. For more information, see “Link
Test Cases to Requirements” (Requirements Toolbox) and “Perform Functional Testing and
Analyze Test Coverage” on page 10-9.

• Run your test cases through the Simulink Test Manager. For more information, see
“Requirements-Based Testing for Model Development” (Simulink Test).

• Record the aggregated coverage results for at least two test cases.

This example shows how to view the links between test cases, model elements, and linked
requirements in a coverage report.

Open the slreqCCProjectStart Project and Load Test Cases

1 Open the slreqCCProjectStart project.

slreqCCProjectStart
2 Load the DriverSwRequest_Tests.mldatx test data suite and open the Simulink Test

Manager.

sltest.testmanager.load('DriverSwRequest_Tests.mldatx')
sltest.testmanager.view

3 In the Simulink Test Manager, click the DriverSwRequest_Tests test file.
4 To enable decision coverage collection for the test case, in the right pane under Coverage

Settings:

• Select Record coverage for system under test.
• Under Coverage Metrics, select Decision.
• Save your changes.

5 Run the loaded test cases.

resultObj = sltest.testmanager.run
6 When the test finishes, navigate to the test case results in the Test Manager. The Aggregated

Coverage Results section displays the coverage for the analyzed model.

 Trace Coverage Results to Requirements

5-37

7 Click Report to create a coverage report.

The coverage report shows requirements details for each model element, including linked
requirements, which tests verify the requirements, and which runs are associated with each
verification test.

5 Coverage Collection During Simulation

5-38

The Decisions analyzed section links to the first test case that reached each decision. To see other
test cases that also reached a decision, hover over the listed test case. For more information, see
“Trace Coverage Results to Associated Test Cases” on page 5-42.

See Also

More About
• “Requirement Testing Details” on page 6-21
• “Link Test Cases to Requirements” (Requirements Toolbox)
• “Perform Functional Testing and Analyze Test Coverage” on page 10-9

 Trace Coverage Results to Requirements

5-39

Assess Coverage Results from Requirements-Based Tests
You can scope coverage results to linked requirements-based tests from the Test Manager in Simulink
Test. The aggregated coverage results are scoped such that each test only contributes coverage for
the corresponding model elements that implement the requirements verified by that test.

Rationale for Scoping Coverage Results to Linked Requirements-Based
Tests
If your model-based design workflow requires that models are fully exercised by requirements-based
tests, you can scope your coverage results to only those outcomes exercised by requirements-based
tests. As an example, DO-178C suggests that structural coverage information collected during
requirements-based testing should confirm that the degree of structural coverage is appropriate and
satisfies the software requirements. When you enable Scope coverage results to linked
requirements, the aggregated coverage results are scoped such that each test only contributes
coverage for the corresponding model elements that implement the requirements verified by that
test.

You define requirements and link them to model elements and tests by using Requirements Toolbox.
Scoping coverage results to linked requirements allows you to produce evidence that your model
coverage comes from the intended requirements-based tests and is not a side effect of an unrelated
test. Scoping coverage results to linked requirements can also reveal inadequate requirement linking
or testing gaps that might otherwise be difficult to detect in aggregated coverage results.

Prerequisites for Scoping Coverage Results to Linked Requirements-
Based Tests
To scope coverage results to linked requirements, you must:

• Have licenses for Simulink Test and Simulink Coverage.
• Link requirements in Requirements Toolbox to model elements and to test cases in Simulink Test

that verify the requirements. For more information on creating requirements links, see “Link
Blocks and Requirements” (Requirements Toolbox).

Note You cannot create or edit requirements links or view detailed information about the
requirements without a Requirements Toolbox license.

• Collect coverage by using the Test Manager in Simulink Test, and enable Scope coverage results
to linked requirements for the aggregated coverage results. For more information on setting up
coverage collection in the Test Manager in Simulink Test, see “Collect Coverage in Tests”
(Simulink Test).

Coverage Reporting for Aggregated Coverage Results Scoped to
Linked Requirements
The following coverage report shows requirements testing details and coverage details for a
MultiPortSwitch block called MPSwitch1.

5 Coverage Collection During Simulation

5-40

In the example above, MPSwitch1 implements Requirement 1, which is verified by Testcase 1.
Therefore, Testcase 1 attempts to provide full coverage for MPSwitch1. Scoping coverage results to
linked requirements makes it easier to assess the extent to which MPSwitch1 was exercised by
Testcase 1 when viewing aggregated coverage results.

The first decision outcome is successfully exercised by Testcase 1 and is reported as satisfied. The
second decision outcome is not exercised by Testcase 1, but is reached by a test unrelated to
Requirements 1. The coverage report therefore reports this decision as not satisfied.

The third decision outcome is not exercised by any test and is therefore reported as not satisfied.

Example
For an example of how to scope coverage results to linked requirements from the Test Manager in
Simulink Test, see “Test Coverage for Requirements-Based Testing” (Simulink Test).

See Also

More About
• “Link Blocks and Requirements” (Requirements Toolbox)
• “Collect Coverage in Tests” (Simulink Test)

 Assess Coverage Results from Requirements-Based Tests

5-41

Trace Coverage Results to Associated Test Cases
If you record aggregated coverage results for test cases in Simulink Test with your model in Normal
or SIL/PIL mode, the aggregated coverage report links to the test cases associated with each model
element.

Prerequisites for Tracing Associated Test Cases to Coverage Results
To view associated test cases in your coverage report, you must record aggregated coverage results
for at least two test cases through the Simulink Test Manager, or produce a coverage report for
cumulative coverage results from the Results Explorer. For more information, see “Perform
Functional Testing and Analyze Test Coverage” on page 10-9.

Note Test case traceability and unit test aggregation for MCDC coverage are only supported for
Masking Mode. Unique-cause MCDC is not supported for these features.

Aggregate Unit-Level Coverage Data into Top-Level Model Coverage

This example shows how to generate an aggregated coverage report that includes results from both
integration and unit tests.

Load the Test Cases into the Simulink® Test™ Manager

The slcovTestTraceabilityExample.mldatx test data is configured to record decision
coverage.

sltest.testmanager.load('slcovTestTraceabilityExample.mldatx');
sltest.testmanager.view

Run the Test Cases

From the Simulink Test Manager, select the Combined Integration and Unit Tests test suite
and click Run. This test suite contains two sub-suites, Integration Tests and Unit Tests.
Alternatively, run the following command:

results = sltest.testmanager.run;

Access the Coverage Report for the Integration Tests

From the Results and Artifacts pane of the Simulink Test Manager, select the results for
Integration Tests. From the Aggregated Coverage Results section, click the Report button.

The coverage report for this test suite only shows coverage results for the integration tests.

5 Coverage Collection During Simulation

5-42

View Subsystem Details

View the coverage details for the subsystem SwitchUnit2. Notice that this subsystem does not receive
full coverage. The first three decision outcomes are covered by integration test run T1. The fourth
decision outcome for the MPSwitch block cannot be satisfied in the integrated system.

Access the Coverage Report for the Unit Tests

From the Results and Artifacts pane of the Simulink Test Manager, select the results for Unit
Tests. From the Aggregated Coverage Results section, click the Report button.

The coverage report for this test suite only shows coverage results for the unit tests of the
SwitchUnit2 subsystem that were recorded by using subsystem test harnesses.

View Subsystem Details

View the coverage details for the subsystem SwitchUnit2. Notice that this subsystem does receive full
coverage from the unit tests.

 Trace Coverage Results to Associated Test Cases

5-43

Locate the Combined Unit-Level and System-Level Coverage Report

From the Results and Artifacts pane of the Simulink Test Manager, select the results for Combined
Integration and Unit Tests. The results show two coverage reports available--one report for
the SwitchUnit2 subsystem tested by the unit tests and one report for the top-level model that
incorporates results from both the unit and integration tests.

Access Aggregated Coverage Report for the Top-Level Model

When you click the Report button for the top-level model, Simulink Coverage aggregates the
integration and unit tests into a system-level coverage report.

5 Coverage Collection During Simulation

5-44

View Subsystem Details

Notice that the subsystem receives full coverage. The first three decision outcomes for the MPSwitch
MultiPortSwitch block are covered by the integration test run T1. The fourth decision outcome for the
MPSwitch MultiPortSwitch block is covered by unit test run U1.2.

See Also

More About
• “Perform Functional Testing and Analyze Test Coverage” on page 10-9
• “Aggregated Tests” on page 6-12

 Trace Coverage Results to Associated Test Cases

5-45

Model Coverage for MATLAB Functions
Simulink Coverage analyzes your model and reports model coverage data when you simulate a model
with coverage enabled. If your model contains MATLAB code, such as inside a MATLAB Function
block or a call to an external MATLAB function, then Simulink Coverage analyzes that code for the
metrics that you select.

Collecting Model Coverage for MATLAB Functions
To analyze your MATLAB Function block or external MATLAB function for coverage, you must first
ensure that the MATLAB code inside the block or function is compatible with code generation. For
more information about configuring MATLAB code for code generation, see “Workflow for Preparing
MATLAB Code for Code Generation” (MATLAB Coder).

For example, consider the following if statement:

if (x > 0 || y > 0)
 reset = 1;

The if statement contains a decision with two conditions (x > 0 and y > 0). Simulink Coverage
analyzes each decision and condition during the simulation of the model and reports how many times
each outcome occurs. For example, if the input signal for x is true at every simulation time step, it
reports 50% condition coverage for that condition because the false case does not occur.

To collect model coverage for MATLAB functions:

• MATLAB Function blocks receive coverage analysis if they have code that applies to the metrics
you have selected in the Coverage pane of the Configuration Parameters dialog box.

• To collect coverage for functions in external MATLAB files, in the Coverage pane of the
Configuration Parameters dialog box, under Include in analysis, select MATLAB files.

• To collect coverage for Simulink Design Verifier functions:

• sldv.condition
• sldv.test
• sldv.assume
• sldv.prove

In the Coverage pane of the Configuration Parameters dialog box, under Other metrics, select
Objectives and Constraints.

Types of Model Coverage for MATLAB Functions
The types of model coverage that Simulink Coverage analyzes for MATLAB functions are:

• “Decision Coverage” on page 5-47
• “Condition and MCDC Coverage” on page 5-47
• “Simulink Design Verifier Coverage” on page 5-47
• “Saturation on Integer Overflow Coverage” on page 5-48
• “Relational Boundary Coverage” on page 5-48

5 Coverage Collection During Simulation

5-46

Decision Coverage

During simulation, Simulink Coverage analyzes these MATLAB statements and reports them as
decision coverage:

• Function header — Decision coverage is 100% if the function or local function is executed at least
once.

• if — Decision coverage is 100% if the if expression evaluates to true at least once and false
at least once.

• switch — Decision coverage is 100% if every switch case is taken at least once, including the
fall-through case.

• for — Decision coverage is 100% if the equivalent loop condition evaluates to true at least once
and false at least once.

• while — Decision coverage is 100% if the loop condition evaluates to true at least once and
false at least once.

Condition and MCDC Coverage

When you collect condition and MCDC coverage, Simulink Coverage analyzes if statement
conditions and logical expressions in assignment statements.

Logical expressions are expressions that contain a logical operator, such as the logical AND (&&) or
the logical OR (||). Model coverage does not analyze simple logical assignments such as:

b = true;

Or single condition assignment statements, such as:

b = a < 1;

Simulink Design Verifier Coverage

These MATLAB functions are active in code generation and in Simulink Design Verifier:

• sldv.condition
• sldv.test
• sldv.assume
• sldv.prove

When you select the Objectives and Constraints coverage metric in the Coverage pane of the
Configuration Parameters dialog box, Simulink Coverage analyzes these functions.

Each of these functions evaluates an expression, such as sldv.test(expr), where expr is a valid
Boolean MATLAB expression. Simulink Design Verifier coverage measures the number of time steps
that the expression expr evaluates to true.

If expr is true for at least one time step, Simulink Design Verifier coverage for that function is
100%. Otherwise, the reported coverage for that function is 0%.

For an example of coverage data for Simulink Design Verifier functions in a coverage report, see
“Simulink Design Verifier Coverage” on page 6-38.

 Model Coverage for MATLAB Functions

5-47

Saturation on Integer Overflow Coverage

When you select the Saturate on integer overflow parameter, Simulink Coverage analyzes logical
statements in the MATLAB function that contain the integer datatype.

Saturate on integer overflow coverage records the number of times the statement saturates on
integer overflow. A test case achieves full coverage when the logical statement saturates on integer
overflow at least once and does not saturate at least once.

Relational Boundary Coverage

You can collect relational boundary coverage for MATLAB Function blocks that contain at least one
relational operation.

If the MATLAB Function block calls functions containing relational operations multiple times, the
relational boundary coverage reports a cumulative result over each instance where the function is
called. If a relational operation in the function uses operands of different types in the different calls,
relational boundary coverage uses tolerance rules for the stricter operand type. For example, if a
relational operation uses int32 operands in one call and double operands in another call, relational
boundary coverage uses tolerance rules for double operands.

For information on the tolerance rules and the order of strictness of types, see “Relational Boundary
Coverage” on page 1-8.

Due to run-time optimizations, dead logic using hard-coded constant inputs is not analyzed for
relational boundary coverage. For example, consider the function:

function out = myFun(x,y)
if nargin < 2
 y = 3;
end

This function can take one or two input arguments and sets a default if the caller did not provide the
second argument. If your model always provides two input arguments when calling this function, the
contents of the if statement is dead logic because the if statement is false at every time step. In this
case, Simulink Coverage does not analyze the statement for relational boundary coverage.

See Also
cvdata

Related Examples
• “Coverage for MATLAB Function Blocks” on page 5-57
• “Model Coverage Reports for MATLAB Functions” on page 5-49

5 Coverage Collection During Simulation

5-48

Model Coverage Reports for MATLAB Functions
After collecting coverage for your model, you can generate a coverage report that summarizes the
coverage results and the details for each block. If your model contains MATLAB Function blocks, you
can view the coverage results line-by-line for the MATLAB code inside the block. The coverage
analysis looks slightly different for each type of MATLAB function:

In this section...
“Coverage Reports for MATLAB Functions in a MATLAB Function Block” on page 5-49
“Coverage Reports for Simulink Design Verifier MATLAB Functions” on page 5-54
“Coverage Reports for MATLAB Functions in an External File” on page 5-56

Coverage Reports for MATLAB Functions in a MATLAB Function Block
Consider the model coverage report for the MATLAB function run_intersect_test, which is
defined inside a MATLAB Function block.

Below the linked function name is a link to the section of the report for the parent MATLAB Function
block that contains the code for the run_intersect_test function.

The top half of the report for the function summarizes its model coverage results. The coverage
metrics for run_intersect_test include decision, condition, and MCDC coverage. You can
understand these metrics by examining the code for run_intersect_test.

 Model Coverage Reports for MATLAB Functions

5-49

Lines with coverage elements are marked by a highlighted line number:

• Line 1 receives decision coverage that indicates whether the top-level function
run_intersect_test executed.

• Line 6 receives decision coverage for the if statement.
• Line 14 receives decision coverage that indicates whether the local function rect_intersect

executed.
• Lines 27 and 30 receive decision, condition, and MCDC coverage for the if statements and

conditions.

The condition right1 < left2 in line 30 displays in red, which indicates that this condition did
not evaluate all of its possible outcomes. The coverage report displays which of the outcomes
remains unsatisfied by the coverage analysis.

The coverage report includes detailed information for each of these lines of code. Click the links to
open the editor to the associated line in the report.

Coverage Summary

The Coverage Details pane displays the metrics that summarize coverage for the entire
run_intersect_test function.

5 Coverage Collection During Simulation

5-50

The conclusions from the coverage summary are:

• There are eight decision outcomes reported for run_intersect_test in the line reports:

• One for line 1 (executed)
• Two for line 6 (true and false)
• One for line 14 (executed)
• Two for line 27 (true and false)
• Two for line 30 (true and false).

The decision coverage for each line shows 100% decision coverage. This result means that
decision coverage for run_intersect_test is eight of eight possible outcomes, or 100%.

• There are four conditions reported for run_intersect_test in the line reports. Lines 27 and 30
each have two conditions, and each condition has two condition outcomes (true and false), for a
total of eight condition outcomes in run_intersect_test. All conditions tested positive for both
the true and false outcomes except the first condition of line 30 (right1 < left2). This
means that condition coverage for run_intersect_test is seven of eight, or 88%.

• The MCDC coverage tables for decision lines 27 and 30 each list two cases of decision reversal for
each condition, for a total of four possible reversals. Only the decision reversal for a change in the
evaluation of the condition right1 < left2 of line 30 from true to false did not occur during
simulation. This means that three of four, or 75% of the possible reversal cases were tested for
during simulation, for a coverage of 75%.

Coverage for Line 1

The first line of every MATLAB function configured for code generation receives coverage analysis as
a decision. The decision indicates that the function executed as a response to being called.

 Model Coverage Reports for MATLAB Functions

5-51

The coverage report for run_intersect_test displays 100% decision coverage, which indicates
that the function executed at least once. The decision table additionally shows that the function
executed eleven times.

Coverage for Line 6

The Decisions analyzed table indicates that the decision in line 6, if isempty(x1), executed a
total of eleven times. The decision evaluated to true for one time step and false for ten time steps.
Because both possible outcomes occurred, decision coverage is 100%.

Coverage for Line 14

The Decisions analyzed table indicates that the local function rect_intersect executed during
testing, and consequently received 100% coverage.

Coverage for Line 27

The Decisions analyzed table indicates that there are two possible outcomes for the decision in line
27, true and false. Five of the eleven times the expression executed, the decision evaluated to
false. The remaining six times, the decision evaluated to true. Because both possible outcomes
occurred, decision coverage is 100%.

Additionally, the Conditions analyzed table shows that, because this decision consists of two
conditions linked by a logical OR (||) operation, only one condition must evaluate true for the
decision outcome to be true. If the first condition evaluates to true, there is no need to evaluate the
second condition. This is called logical short circuiting. The first condition, top1 < bottom2, was
evaluated eleven times and was true twice. This result means that the second condition, top2 <
bottom1 was evaluated only nine times. The condition evaluated to true four times, which brings
the total true occurrences for the decision to six, which matches the number in the Decisions
analyzed table.

MCDC coverage looks for decision reversals that occur because one condition outcome changes from
T to F or from F to T. The MC/DC analysis table identifies possible combinations of outcomes for the

5 Coverage Collection During Simulation

5-52

conditions that lead to a reversal in the decision. The character x indicates a condition outcome that
is irrelevant due to logical short circuiting. Condition outcome combinations that are not achieved
during simulation are marked with a set of parentheses. For line 27, because each condition
independently affects the decision outcome, the reported MCDC coverage is 100% and the MC/DC
analysis table does not include parentheses around any condition outcome combinations.

Coverage for Line 30

The line 30 decision, if (right1 < left2 || right2 < left1), is nested in the else case of
the if statement on line 27. Therefore, the line 30 decision is evaluated only if the line 27 decision is
false. Because the line 27 decision evaluated false five times, line 30 is evaluated five times, three
of which are false. Because both the true and false outcomes are achieved, decision coverage for
line 30 is 100%.

Because line 30, like line 27, has two conditions related by a logical OR operator (||), condition 2 is
evaluated only if condition 1 is false. Because condition 1 evaluates false five times, condition 2 is
evaluated five times. Of these, condition 2 evaluates true two times and false three times, which
accounts for the two occurrences of the true outcome for this decision.

Because the first condition of the line 30 decision does not evaluate true, both outcomes do not
occur for that condition and the report highlights the condition coverage for the first condition with a
rose color. The report also highlights the MCDC coverage in the same way for a decision reversal
based on the true outcome for that condition.

 Model Coverage Reports for MATLAB Functions

5-53

Coverage Reports for Simulink Design Verifier MATLAB Functions
If you configure your MATLAB code for code generation, and the code includes these Simulink Design
Verifier functions, you can measure coverage:

• sldv.condition
• sldv.test
• sldv.assume
• sldv.prove

For this example, consider a model that contains a MATLAB Function block.

The MATLAB Function block contains this code:

function y = fcn(u)
% This block supports MATLAB for code generation.

sldv.condition(u > -30)

5 Coverage Collection During Simulation

5-54

sldv.test(u == 30)
y = 1;

To collect coverage for Simulink Design Verifier MATLAB functions, in the Configuration Parameters
dialog box, on the Coverage pane, under Other metrics, select Objectives and Constraints.

After simulation, the model coverage report displays coverage for the sldv.condition and
sldv.test functions. For sldv.condition, the expression u > -30 evaluated to true 51 times.
For sldv.test, the expression u == 30 evaluated to true 51 times.

For an example of model coverage data for Simulink Design Verifier blocks, see “Objectives and
Constraints Coverage” on page 1-7.

 Model Coverage Reports for MATLAB Functions

5-55

Coverage Reports for MATLAB Functions in an External File
Using the same model in “Model Coverage Reports for MATLAB Functions” on page 5-49, suppose
the MATLAB functions run_intersect_test and rect_intersect are stored in an external
MATLAB file named run_intersect_test.m.

To collect coverage for MATLAB functions in an external file, in the Configuration Parameters dialog
box, on the Coverage pane, select Coverage for MATLAB files.

After simulation, the model coverage report summary contains sections for the top-level model and
for the external function.

The model coverage report for run_intersect_test.m reports the same coverage data as if the
functions were stored in the MATLAB Function block.

For a detailed example of a model coverage report for a MATLAB function in an external file, see
“External MATLAB File Coverage Report” on page 6-4.

See Also

Related Examples
• “Model Coverage for MATLAB Functions” on page 5-46
• “Coverage for MATLAB Function Blocks” on page 5-57

5 Coverage Collection During Simulation

5-56

Coverage for MATLAB Function Blocks

This example explains how Model Coverage relates to MATLAB® code inside a MATLAB Function
Block.

The slvnvdemo_eml_model_coverage_demo model contains several MATLAB Function Blocks that
demonstrate model coverage behavior. The model is already configured to collect coverage. On the
Simulation tab, click Run (Coverage).

When the simulation is complete, the Coverage Details pane opens on the right side of the Simulink
window. In the Coverage Details, scroll up to see the Summary section of the report. In this section,
you can see the top model and each MATLAB function block, which are named according to the type
of MATLAB function block coverage they demonstrate.

Function Coverage

Click on the block titled Function coverage to show this block in the Coverage Details pane.

 Coverage for MATLAB Function Blocks

5-57

Functions in the MATLAB function block report whether each function within the block is executed at
least once with a decision outcome. In the Function coverage block, 2 out of the 3 functions were
called, resulting in 67% decision coverage for the block.

5 Coverage Collection During Simulation

5-58

If-Statement Coverage

Click on the block titled If coverage.

 Coverage for MATLAB Function Blocks

5-59

5 Coverage Collection During Simulation

5-60

If statements in the MATLAB function block report decision coverage to indicate whether the if
statement is true or false. Full coverage requires at least one execution where the if statement is
true and at least one execution where it is false. Coverage requirements do not change when an else
statement is added.

In this MATLAB function block, there are 8 decision outcomes. 6 of the 8 are the true and false
outcomes of the 3 if-statements, and the other 2 are the decision outcomes that indicate that each of
the 2 functions are called.

And-Or Coverage

Click on the block titled and-or coverage.

 Coverage for MATLAB Function Blocks

5-61

5 Coverage Collection During Simulation

5-62

If statements in the MATLAB function block that have && and || in their expressions receive condition
and decision coverage. Full condition coverage requires that each condition evaluates true at least
once and evaluates false at least once. Full MCDC coverage requires that each condition is shown to
independently affect the decision (if-statement) outcome.

Switch-Case Coverage

Click on the block titled Switch-case coverage.

 Coverage for MATLAB Function Blocks

5-63

5 Coverage Collection During Simulation

5-64

Switch-case statements in the MATLAB function block report decision outcomes that indicate which
case statements execute during simulation. To receive full coverage, your model must execute each
case statement at least once. Even if the otherwise keyword is not used, there must still be at least
one execution of the switch statement where no case statements are valid to achieve full coverage.

While Coverage

Click on the block titled While coverage.

 Coverage for MATLAB Function Blocks

5-65

5 Coverage Collection During Simulation

5-66

While statements in the MATLAB function block reports the while loop decision outcomes. Full
coverage requires at least one execution where the while loop expression is true and at least one
execution where the expression is false.

For coverage

Click on the block titled For Coverage.

 Coverage for MATLAB Function Blocks

5-67

5 Coverage Collection During Simulation

5-68

For statements in the MATLAB function block report decision outcomes for the loop expression. Full
coverage requires at least one execution where the loop expression is true and at least one execution
where it is false.

Assignment Coverage

Click on the block titled Assignment Coverage.

 Coverage for MATLAB Function Blocks

5-69

5 Coverage Collection During Simulation

5-70

Logical expressions in assignment statements within a MATLAB function block that contain && and ||
report condition coverage. Full condition coverage requires that each condition evaluates true at
least once and false at least once. Full MCDC requires that each condition independently affects the
parent decision outcome.

External MATLAB Files and Local or Nested Functions

External MATLAB files and local or nested functions called by a function inside a MATLAB function
block receive coverage the same way that the rest of the code inside the block does. The difference is
that external MATLAB files and local or nested functions generate a separate cvdata object, and
therefore a separate code coverage report and are not included in the main model coverage report.
The summary report contains a link to the code coverage report for each external MATLAB file.

 Coverage for MATLAB Function Blocks

5-71

Coverage for Custom C/C++ Code in Simulink Models
When you record coverage for models containing supported C/C++ S-Functions, MATLAB Function
blocks that call external C/C++ code, C Caller blocks with C/C++ code , or Stateflow charts that
integrate custom C/C++ code for simulation, coverage is recorded for the C/C++ code within the C/C
++ S-Functions, MATLAB Function blocks, or Stateflow charts. The coverage results for the custom
code can be viewed in the same report as the rest of the model. For each S-Function block, MATLAB
Function block, or Stateflow chart, the report links to a detailed coverage report for the C/C++ code
in the block.

Enable Code Coverage for Custom C/C++ code in MATLAB Function
Blocks, C Caller Blocks, and Stateflow Charts
To enable code coverage for custom C/C++ code in your Simulink model:

1 On the Simulation Target pane of the Configuration Parameters, select Import custom code.
2 On the Simulation Target pane of the Configuration Parameters, select Enable custom code

analysis.

Simulink Coverage records code coverage for custom C/C++ code in MATLAB Function blocks, C
Caller blocks, and Stateflow charts.

Code Coverage for S-Functions
Make S-Function Compatible with Model Coverage

If you use the legacy_code function, S-Function Builder block or mex function to create your S-
Functions, adapt your method appropriately to make the S-Function compatible with model coverage.

For more information on the three approaches, see “Implement C/C++ S-Functions”.

• “S-Function Using legacy_code Function” on page 5-72
• “S-Function Using S-Function Builder” on page 5-72
• “S-Function Using mex Function” on page 5-73

S-Function Using legacy_code Function

1 Initialize a MATLAB structure with fields that represent Legacy Code Tool properties.

def = legacy_code('initialize')
2 To enable model coverage, turn on the option def.Options.supportCoverage.

def.Options.supportCoverageAndDesignVerifier = true;
3 Use the structure def in the usual way to generate an S-function. For an example, see “Coverage

for S-Functions” on page 5-78.

S-Function Using S-Function Builder

1 Copy an instance of the S-Function Builder block from the User-Defined Functions library in
the Library Browser into the your model.

2 Double-click the block to open the S-Function Builder dialog box.

5 Coverage Collection During Simulation

5-72

3 On the Build Info tab, select Enable support for coverage.

S-Function Using mex Function

If you use the mex function to compile and link your source files, use the slcovmex function instead.
The slcovmex function compiles your source code and also makes it compatible with coverage.

This function has the same syntax and takes the same options as the mex function. In addition, you
can provide some options relevant for model coverage. For more information, see slcovmex.

Generate Coverage Report for S-Function

1 In the Simulink Editor, select Model Settings on the Modeling tab.
2 On the Coverage pane of the Configuration Parameters dialog box, under Include in analysis,

select C/C++ S-functions.

When you run a simulation, the coverage report contains coverage metrics for C/C++ S-Function
blocks in your model. For each S-Function block, the report links to a detailed coverage report for the
C/C++ code in the block.

See Also

Related Examples
• “View Coverage Results for Custom C/C++ Code in S-Function Blocks” on page 5-74

More About
• “C/C++ S-Function” on page 2-21

 Coverage for Custom C/C++ Code in Simulink Models

5-73

View Coverage Results for Custom C/C++ Code in S-Function
Blocks

This example shows how to view coverage results for the C/C++ code in S-Function blocks in your
model. To view coverage results for the C/C++ code in the blocks:

• Enable support for S-Function coverage. For more information, see “Coverage for Custom C/C++
Code in Simulink Models” on page 5-72.

• Run simulation and view the coverage report.

The coverage results for S-Function blocks can be viewed in the same report as the rest of the
model. For each S-Function block, the report links to a detailed coverage report for the C/C++
code in the block.

To view the full code coverage report used in this example, follow the steps in “Coverage for S-
Functions” on page 5-78.

1 In the coverage report, view the coverage metrics for the S-Function block.

For more information on the coverage report format, see “Top-Level Model Coverage Report” on
page 6-11.

2 Select the Detailed Report link. The code coverage report for the S-Function block opens.
3 Select each of the links in Table Of Contents to navigate to various sections of the report.

5 Coverage Collection During Simulation

5-74

Section Title Purpose
Analysis information Contains information such as time when model was created

and last modified, and file size.
Tests Contains information about the simulation such as start and

end time.
Summary Contains coverage information about the files and functions

in the S-Function block. For each file and function, the
percentage coverage is displayed. The coverage types
relevant for the code are the following:
Coverage Type Label
“Cyclomatic Complexity” on
page 4-4

Complexity

“Condition Coverage” on
page 4-2

Condition.

“Decision Coverage” on page
4-3

Decision

“Modified Condition/Decision
Coverage (MCDC)” on page
4-4

MCDC

“Relational Boundary
Coverage” on page 4-5

Relational Boundary

Percentage of statements
covered

Stmt

Details Contains coverage information about the statements that
receive condition, decision or MCDC coverage. The
information is grouped by file and function.

Code Contains the C/C++ code. Statements that are not covered
are highlighted in pink.

4 In the Summary section, select each file or function name to see details of coverage for
statements in the file or function.

 View Coverage Results for Custom C/C++ Code in S-Function Blocks

5-75

5 The condition, decision or MCDC outcomes that were not tested during simulation are
highlighted in pink. Within the details for a file or function, scroll down to note these cases and
investigate them further.

6 To obtain an overview of the statements that were not covered, navigate to the Code section.
This section contains your code with the uncovered statements highlighted in pink.

5 Coverage Collection During Simulation

5-76

See Also

Related Examples
• “C/C++ S-Function” on page 2-21
• “Software-in-the-Loop Code Coverage” on page 4-21

 View Coverage Results for Custom C/C++ Code in S-Function Blocks

5-77

Coverage for S-Functions

This example shows how to configure an S-Function generated with the Legacy Code Tool to be
compatible with coverage. The model coverage tool supports S-Functions that are:

• Generated with the Legacy Code Tool, with def.Options.supportCoverage set to true,
• Generated with the SFunctionBuilder, with Enable support for coverage selected on the Build

Info tab of the SFunctionBuilder dialog box, or
• Compiled with the slcovmex function.

Open Example Model

The example model slcoverage_lct_bus contains an S-Function generated with the Legacy Code Tool.
The S-Function has constructs that receive decision, condition, and MCDC coverage.

Open slcoverage_lct_bus

Configure S-Function to Be Compatible with Model Coverage

The legacy source code in the files counterbus.h, and counterbus.c implements the same algorithm as
in slcoverage_lct_bus/slCounter. The Legacy Code Tool data structure is defined as follows:

load_system('slcoverage_lct_bus');
open_system('slcoverage_lct_bus/TestCounter');
load slcoverage_lct_data.mat

def = legacy_code('initialize');
def.SFunctionName = 'slcoverage_sfun_counterbus';
def.OutputFcnSpec = 'void counterbusFcn(COUNTERBUS u1[1], int32 u2, COUNTERBUS y1[1], int32 y2[1])';
def.HeaderFiles = {'counterbus.h'};
def.SourceFiles = {'counterbus.c'};

To make this S-Function compatible with model coverage, enable the following option:

def.Options.supportCoverage = true;

Generate and compile the S-Function using the legacy_code function:

legacy_code('generate_for_sim', def);

Start Compiling slcoverage_sfun_counterbus
mex -IC:\TEMP\Bdoc23a_2213998_3568\ib570499\38\tpefa5766f\slcoverage-ex71096464 -c C:\TEMP\Bdoc23a_2213998_3568\ib570499\38\tpa14269de_3b36_48f5_b279_a1ba65bff8eb\counterbus.c -outdir C:\TEMP\Bdoc23a_2213998_3568\ib570499\38\tpbf412bb4_3c74_4df7_bc3d_14ffe24c8291
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.

5 Coverage Collection During Simulation

5-78

matlab:slcoverage_lct_bus

mex -IC:\TEMP\Bdoc23a_2213998_3568\ib570499\38\tpefa5766f\slcoverage-ex71096464 C:\TEMP\Bdoc23a_2213998_3568\ib570499\38\tpa14269de_3b36_48f5_b279_a1ba65bff8eb\tpa3016ab4_89dc_419a_9776_b7e3cc02f67d.c C:\TEMP\Bdoc23a_2213998_3568\ib570499\38\tpbf412bb4_3c74_4df7_bc3d_14ffe24c8291\counterbus.obj B:\matlab\extern\lib\win64\microsoft\libmwsl_sfcn_cov_bridge.lib -output slcoverage_sfun_counterbus
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
mex -IC:\TEMP\Bdoc23a_2213998_3568\ib570499\38\tpefa5766f\slcoverage-ex71096464 -c C:\TEMP\Bdoc23a_2213998_3568\ib570499\38\tpefa5766f\slcoverage-ex71096464\counterbus.c -outdir C:\TEMP\Bdoc23a_2213998_3568\ib570499\38\tpbf412bb4_3c74_4df7_bc3d_14ffe24c8291
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
mex -IC:\TEMP\Bdoc23a_2213998_3568\ib570499\38\tpefa5766f\slcoverage-ex71096464 C:\TEMP\Bdoc23a_2213998_3568\ib570499\38\tpa14269de_3b36_48f5_b279_a1ba65bff8eb\slcoverage_sfun_counterbus.c C:\TEMP\Bdoc23a_2213998_3568\ib570499\38\tpa14269de_3b36_48f5_b279_a1ba65bff8eb\tp7c051922_a001_43c6_8abf_3bf98c25f5de.c C:\TEMP\Bdoc23a_2213998_3568\ib570499\38\tpa14269de_3b36_48f5_b279_a1ba65bff8eb\tp9659c848_3fb7_4317_b769_292171536cb3.c C:\TEMP\Bdoc23a_2213998_3568\ib570499\38\tpbf412bb4_3c74_4df7_bc3d_14ffe24c8291\counterbus.obj B:\matlab\extern\lib\win64\microsoft\libmwsl_sfcn_cov_bridge.lib -output slcoverage_sfun_counterbus
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
Finish Compiling slcoverage_sfun_counterbus
Exit

Enable S-Function Coverage

To enable coverage collection for S-Functions, select C/C++ S-Functions in the Coverage pane of
the Configurations Parameters dialog box. Alternatively, set the option through the command line:

set_param('slcoverage_lct_bus',...
 'CovMetricStructuralLevel', 'MCDC',...
 'RecordCoverage', 'on',...
 'CovSFcnEnable', 'on',...
 'CovSaveSingleToWorkspaceVar','on'...
);

Run Simulation and Produce Coverage Report

Once you enable coverage data collection, coverage information is automatically recorded when you
simulate the model. At the end of the simulation, you can generate an HTML report of coverage
information, which is displayed in the built-in MATLAB® web browser.

sim('slcoverage_lct_bus', 'StopTime', '20');
cvhtml('coverageResults', covdata);

Extract Information from Coverage Data Objects

The cvdata object can be used to extract coverage information for S-Functions, just like any other
supported model element. For instance, the decisioninfo command extracts coverage information
from a block path or a block handle. The output is a vector containing the satisfied and total
outcomes for a single model object.

cov = decisioninfo(covdata, 'slcoverage_lct_bus/TestCounter/slcoverage_sfun_counterbus')

cov =

 3 4

You then use this coverage information to calculate the percentage of covered model objects:

percentCov = 100 * (cov(1)/cov(2))

percentCov =

 75

 Coverage for S-Functions

5-79

S-Function coverage is fully compatible with the model coverage commands, such as decisioninfo,
conditioninfo, and mcdcinfo.

5 Coverage Collection During Simulation

5-80

Model Coverage for Stateflow Charts

A model coverage report is generated automatically if you simulate your model using the Run button.
If you did not use the Run button, or you loaded coverage data without simulating the model,
generate a Model Coverage report using cvhtml.

For Stateflow charts, Simulink Coverage records the execution of the chart itself and the execution of
states, transition decisions, and individual conditions that compose each decision. Simulink Coverage
also analyzes assignment statements that contain logical expressions. Logical expressions are
expressions that contain a logical operator, such as the logical AND (&&) or the logical OR (||).
Assignment statements can be anywhere in your chart, including state enter or exit actions, transition
actions, and more.

Note Model coverage only analyzes assignment statements that contain logical expressions, but code
coverage analyzes all Boolean assignment statements. This difference can result in a discrepancy
between model and code coverage results.

After simulation ends, Simulink Coverage reports on how thoroughly a model was tested. The report
shows:

• How many times each exclusive sub-state is executed or exited from its parent superstate and
entered due to parent superstate history. A sub-state is considered executed when its during
action is taken.

• How many times each transition decision has been evaluated as true or false.
• How many times each condition has been evaluated as true or false.

Note To measure model coverage data for a Stateflow chart, you must:

• Have a Stateflow license.
• Have debugging/animation enabled for the chart.

Specify Coverage Report Settings for Stateflow Charts
Specify coverage recording settings from the Coverage pane of the Configuration Parameters dialog
box.

Enabling coverage analysis also enables the selection of different coverage metrics. The following
sections address only coverage metrics that affect reports for Stateflow charts. These metrics include
decision coverage, condition coverage, and MCDC coverage.

Model Coverage Reports for Stateflow Charts
• “Summary Report Section” on page 5-82
• “Subsystem and Chart Details Report Sections” on page 5-82
• “State Details Report Section” on page 5-84

 Model Coverage for Stateflow Charts

5-81

• “Transition Details Report Section” on page 5-87

The following sections of a Model Coverage report were generated by simulating the sf_boiler
model, which includes the Bang-Bang Controller chart. The coverage metrics for MCDC are enabled
for this report.

Summary Report Section

The Summary section shows coverage results for the entire test and appears at the beginning of the
Model Coverage report.

Each line in the hierarchy summarizes the coverage results at that level and the levels below it. You
can click a hyperlink to a later section in the report with the same assigned hierarchical order
number that details that coverage and the coverage of its children.

The top level, sf_boiler, is the Simulink model itself. The second level, Bang-Bang Controller, is the
Stateflow chart. The next levels are superstates within the chart, in order of hierarchical
containment. Each superstate uses an SF: prefix. The bottom level, Boiler Plant model, is an
additional subsystem in the model.

Subsystem and Chart Details Report Sections

When recording coverage for a Stateflow chart, the Simulink Coverage software reports two types of
coverage for the chart—Subsystem and Chart.

• Subsystem — This section reports coverage for the chart:

• Coverage (this object): Coverage data for the chart as a container object
• Coverage (inc.) descendants: Coverage data for the chart and the states and transitions in the

chart.

5 Coverage Collection During Simulation

5-82

If you click the hyperlink of the subsystem name in the section title, the Bang-Bang Controller
block is highlighted in the block diagram.

Decision coverage is not applicable (NA) because this chart does not have an explicit trigger.
Condition coverage and MCDC are not applicable (NA) for a chart, but apply to its descendants.

• Chart — This section reports coverage for the chart:

• Coverage (this object): Coverage data for the chart and its inputs
• Coverage (inc.) descendants: Coverage data for the chart and the states and transitions in the

chart.

If you click the hyperlink of the chart name in the section title, the chart opens in the Stateflow
Editor.

Decision coverage is listed appears for the chart and its descendants. Condition coverage and
MCDC are not applicable (NA) for a chart, but apply to its descendants.

 Model Coverage for Stateflow Charts

5-83

State Details Report Section

For each state in a chart, the coverage report includes a State section with details about the coverage
recorded for that state.

In the sf_boiler model, the state On resides in the box Heater. On is a superstate that contains:

• Two substates HIGH and NORM
• A history junction
• The function warm

5 Coverage Collection During Simulation

5-84

The coverage report includes a State section on the state On.

 Model Coverage for Stateflow Charts

5-85

The decision coverage for the On state tests the decision of which substate to execute.

The three decisions are listed in the report:

• Under Substate executed, which substate to execute when On executes.
• Under Substate exited when parent exited, which substate is active when On exits. NORM is listed

as never being active when On exits because the coverage tool sees the supertransition from NORM
to Off as a transition from On to Off.

• Under Previously active substate entered due to history, which substate to reenter when On re-
executes. The history junction records the previously active substate.

Because each decision can result in either HIGH or NORM, the total possible outcomes are 3 × 2 = 6.
The results indicate that five of six possible outcomes were tested during simulation.

Cyclomatic complexity and decision coverage also apply to descendants of the On state. The decision
required by the condition [warm()] for the transition from HIGH to NORM brings the total possible
decision outcomes to 8. Condition coverage and MCDC are not applicable (NA) for a state.

5 Coverage Collection During Simulation

5-86

Note Nodes and edges that make up the cyclomatic complexity calculation have no direct
relationship with model objects (states, transitions, and so on). Instead, this calculation requires a
graph representation of the equivalent control flow.

Transition Details Report Section

Reports for transitions appear under the report sections of their owning objects. Transitions do not
appear in the model hierarchy of the Summary section, since the hierarchy is based on superstates
that own other Stateflow objects.

The decision for this transition depends on the time delay of 40 seconds and the condition [cold()].
If, after a 40 second delay, the environment is cold (cold() = 1), the decision to execute this
transition and turn the Heater on is made. For other time intervals or environment conditions, the
decision is made not to execute.

 Model Coverage for Stateflow Charts

5-87

For decision coverage, both true and false outcomes occurred. Because two of two decision outcomes
occurred, coverage was full or 100%.

Condition coverage shows that only 4 of 6 condition outcomes were tested. The temporal logic
statement after(40,sec) represents two conditions: the occurrence of sec and the time delay
after(40,sec). Therefore, three conditions on the transition exist: sec, after(40,sec), and
cold(). Since each of these decisions can be true or false, six possible condition outcomes exist.

The Conditions analyzed table shows each condition as a row with the recorded number of
occurrences for each outcome (true or false). Decision rows in which a possible outcome did not
occur are shaded. For example, the first and the third rows did not record an occurrence of a false
outcome.

In the MCDC report, all sets of occurrences of the transition conditions are scanned for a particular
pair of decisions for each condition in which the following are true:

• The condition varies from true to false.
• All other conditions contributing to the decision outcome remain constant.
• The outcome of the decision varies from true to false, or the reverse.

For three conditions related by an implied AND operator, these criteria can be satisfied by the
occurrence of these conditions.

Condition Tested True Outcome False Outcome
1 TTT Fxx
2 TTT TFx
3 TTT TTF

Notice that in each line, the condition tested changes from true to false while the other condition
remains constant. Irrelevant contributors are coded with an "x" (discussed below). If both outcomes
occur during testing, coverage is complete (100%) for the condition tested.

The preceding report example shows coverage only for condition 2. The false outcomes required for
conditions 1 and 3 did not occur, and are indicated by parentheses for both conditions. Therefore,
condition rows 1 and 3 are shaded. While condition 2 has been tested, conditions 1 and 3 have not
and MCDC is 33%.

For some decisions, the values of some conditions are irrelevant under certain circumstances. For
example, in the decision [C1 & C2 & C3 | C4 & C5] the left side of the | is false if any one of the
conditions C1, C2, or C3 is false. The same applies to the right side result if either C4 or C5 is false.
When searching for matching pairs that change the outcome of the decision by changing one
condition, holding some of the remaining conditions constant is irrelevant. In these cases, the MCDC
report marks these conditions with an "x" to indicate their irrelevance as a contributor to the result.
These conditions appear as shown.

5 Coverage Collection During Simulation

5-88

Consider the first matched pair. Since condition 1 is true in the True outcome column, it must be
false in the matching False outcome column. This makes the conditions C2 and C3 irrelevant for the
false outcome since C1 & C2 & C3 is always false if C1 is false. Also, since the false outcome is
required to evaluate to false, the evaluation of C4 & C5 must also be false. In this case, a match was
found with C4 = F, making condition C5 irrelevant.

Code Coverage for C/C++ code in Stateflow Charts
Simulink Coverage can record code coverage if your Stateflow chart contains custom C/C++ code.
For more information, see “Coverage for Custom C/C++ Code in Simulink Models” on page 5-72.

Model Coverage for Stateflow State Transition Tables
State transition tables are an alternative way of expressing modal logic in Stateflow. Stateflow charts
represent modal logic graphically, and state transition tables can represent equivalent modal logic in
tabular form. For more information, see “State Transition Tables” (Stateflow).

Coverage results for state transition tables are the same as coverage results for equivalent Stateflow
charts, except for a slight difference that arises in coverage of temporal logic. For example, consider
the temporal logic expression after(4, tick) in the Mode Logic chart of the
slvnvdemo_covfilt example model.

In chart coverage, the after(4, tick) transition represents two conditions: the occurrence of
tick and the time delay after(4, tick). Since the temporal event tick is never false, the first
condition is not satisfiable, and you cannot record 100% condition and MCDC coverage for the
transition after(4, tick).

 Model Coverage for Stateflow Charts

5-89

In state transition table coverage, the after(4, tick) transition represents a single decision, with
no subcondition for the occurrence of tick. Therefore, only decision coverage is recorded.

For state transition tables containing temporal logic decisions, as in the above example, condition
coverage and MCDC is not recorded.

5 Coverage Collection During Simulation

5-90

Types of Coverage for Stateflow Charts

Cyclomatic Complexity for Stateflow Charts

Cyclomatic complexity is a measure of the complexity of a software module based on its edges, nodes,
and components within a control-flow chart. It provides an indication of how many times you need to
test the module.

The calculation of cyclomatic complexity is as follows:

CC = E - N + p

where CC is the cyclomatic complexity, E is the number of edges, N is the number of nodes, and p is
the number of components.

Within the Model Coverage tool, each decision is exactly equivalent to a single control flow node, and
each decision outcome is equivalent to a control flow edge. Any additional structure in the control-
flow chart is ignored since it contributes the same number of nodes as edges and therefore has no
effect on the complexity calculation. Therefore, you can express cyclomatic complexity as follows:

CC = OUTCOMES - DECISIONS + p

For analysis purposes, each chart counts as a single component.

Decision Coverage for Stateflow Charts
Decision coverage interprets a model execution in terms of underlying decisions where behavior or
execution must take one outcome from a set of mutually exclusive outcomes.

Note Full coverage for an object of decision means that every decision has had at least one
occurrence of each of its possible outcomes.

Decisions belong to an object making the decision based on its contents or properties. The following
table lists the decisions recorded for model coverage for the Stateflow objects owning them. The
sections that follow the table describe these decisions and their possible outcomes.

Object Possible Decisions
Chart If a chart is a triggered Simulink block, it must decide whether or not to execute

its block.

If a chart contains exclusive (OR) substates, it must decide which of its states to
execute.

State If a state is a superstate containing exclusive (OR) substates, it must decide which
substate to execute.

If a state has on event name actions (which might include temporal logic
operators), the state must decide whether or not to execute the actions.

 Types of Coverage for Stateflow Charts

5-91

Object Possible Decisions
Transition If a transition is a conditional transition, it must decide whether or not to exit its

active source state or junction and enter another state or junction.

Chart as a Triggered Simulink Block Decision

If the chart is a triggered block in a Simulink model, the decision to execute the block is tested. If the
block is not triggered, there is no decision to execute the block, and the measurement of decision
coverage is not applicable (NA).

Chart Containing Exclusive OR Substates Decision

If the chart contains exclusive (OR) substates, the decision on which substate to execute is tested. If
the chart contains only parallel AND substates, this coverage measurement is not applicable (NA).

Superstate Containing Exclusive OR Substates Decision

Since a chart is hierarchically processed from the top down, procedures such as exclusive (OR)
substate entry, exit, and execution are sometimes decided by the parenting superstate.

Note Decision coverage for superstates applies only to exclusive (OR) substates. A superstate makes
no decisions for parallel (AND) substates.

Since a superstate must decide which exclusive (OR) substate to process, the number of decision
outcomes for the superstate is the number of exclusive (OR) substates that it contains. In the
examples that follow, the choice of which substate to process can occur in one of three possible
contexts.

Note Implicit transitions appear as dashed lines in the following examples.

5 Coverage Collection During Simulation

5-92

Context Example Decisions That Occur
Active call States A and A1 are active. • The parent of states A and B must

decide which of these states to
process. This decision belongs to the
parent. Since A is active, it is
processed.

• State A, the parent of states A1 and
A2, must decide which of these
states to process. This decision
belongs to state A. Since A1 is active,
it is processed.

During processing of state A1, all
outgoing transitions are tested. This
decision belongs to the transition and
not to the parent state A. In this case,
the transition marked by condition C2 is
tested and a decision is made whether
to take the transition to A2 or not.

Implicit substate
exit

A transition takes place whose source is
superstate A and whose destination is state B.

If the superstate has two exclusive (OR)
substates, it is the decision of
superstate A which substate performs
the implicit transition from substate to
superstate.

Substate entry
with a history
junction

A history junction records which substate was
last active before the superstate was exited.

If that superstate becomes the
destination of one or more transitions,
the history junction decides which
previously active substate to enter.

For more information, see “State Details Report Section” on page 5-84.

 Types of Coverage for Stateflow Charts

5-93

State with On Event_Name Action Statement Decision

A state that has an on event_name action statement must decide whether to execute that statement
based on the reception of a specified event or on an accumulation of the specified event when using
temporal logic operators.

Conditional Transition Decision

A conditional transition is a transition with a triggering event and/or a guarding condition. In a
conditional transition from one state to another, the decision to exit one state and enter another is
credited to the transition itself.

Note Only conditional transitions receive decision coverage. Transitions without decisions are not
applicable to decision coverage.

Condition Coverage for Stateflow Charts
Condition coverage reports on the extent to which all possible outcomes are achieved for individual
subconditions composing a transition decision or for logical expressions in assignment statements in
states and transitions.

For example, for the decision [A & B & C] on a transition, condition coverage reports on the true and
false occurrences of each of the subconditions A, B, and C. This results in eight possible outcomes:
true and false for each of three subconditions.

Outcome A B C
1 T T T
2 T T F
3 T F T
4 T F F
5 F T T
6 F T F
7 F F T
8 F F F

For more information, see “Transition Details Report Section” on page 5-87.

MCDC Coverage for Stateflow Charts
The Modified Condition Decision/Coverage (MCDC) option reports a test's coverage of occurrences in
which changing an individual subcondition within a logical expression results in changing the entire
expression from true to false or false to true.

For example, if a transition executes on the condition [C1 & C2 & C3 | C4 & C5], the MCDC
report for that transition shows actual occurrences for each of the five subconditions (C1, C2, C3,
C4, C5) in which changing its result from true to false is able to change the result of the entire
condition from true to false.

5 Coverage Collection During Simulation

5-94

Relational Boundary Coverage for Stateflow Charts
If a transition in a Stateflow chart involves a relational operation, it receives relational boundary
coverage. For more information, see “Relational Boundary Coverage” on page 1-8.

Simulink Design Verifier Coverage for Stateflow Charts
You can use the following Simulink Design Verifier functions inside Stateflow charts:

• sldv.condition
• sldv.test
• sldv.assume
• sldv.prove

If you do not have a Simulink Design Verifier license, you can collect model coverage for a Stateflow
chart containing these functions, but you cannot analyze the model using the Simulink Design Verifier
software.

When you specify the Objectives and Constraints coverage metric in the Coverage pane of the
Configuration Parameters dialog box, the Simulink Coverage software records coverage for these
functions.

Each of these functions evaluates an expression expr, for example, sldv.test(expr), where expr
is any valid Boolean MATLAB expression. Simulink Design Verifier coverage measures the number of
time steps that the expression expr evaluates to true.

If expr is true for at least one time step, Simulink Design Verifier coverage for that function is
100%. Otherwise, the Simulink Coverage software reports coverage for that function as 0%.

Consider a model that contains this Stateflow chart:

To collect coverage for Simulink Design Verifier functions, on the Coverage pane in the Configuration
Parameters dialog box, select Objectives and Constraints.

After simulation, the model coverage report lists coverage for the sldv.condition, sldv.assume,
sldv.prove, and sldv.test functions.

 Types of Coverage for Stateflow Charts

5-95

5 Coverage Collection During Simulation

5-96

Model Coverage Display for Stateflow Charts

Simulink Coverage displays model coverage results for individual blocks directly in Stateflow charts.
When you simulate your model with coverage enabled, the model displays:

• Highlighting for Stateflow elements that receive model coverage during simulation
• A context-sensitive display of summary model coverage information for each object

For details on enabling coverage highlighting, see “Enable Coverage Highlighting” on page 5-21.

Display Model Coverage with Model Coloring
When you enable coverage and simulate the model with the Run button, the model highlights
individual Stateflow elements receiving coverage. If you run your model using sim the model does
not display coverage results by default. In this case, you can see the model highlighting by using
cvmodelview.

1 Open the sf_car model from “Simulate Chart as a Simulink Block With Local Events”
(Stateflow).

2 In the Modeling tab, click Model Settings.
3 In the Coverage pane of the Configuration Parameters dialog box, select Enable coverage

analysis.
4 In the Coverage metrics section, set Structural coverage level to Modified Condition

Decision Coverage (MCDC).
5 Click OK.
6 Simulate the model by clicking the Run (Coverage) button.
7 Open the shift_logic Stateflow chart.

After simulation ends, the model highlights the chart objects that were analyzed for coverage.

 Model Coverage Display for Stateflow Charts

5-97

The colors indicate the completeness of coverage analysis:

• Green border for full coverage
• Red border for partial or missing coverage
• Light grey for elements not analyzed for coverage

States that include executable code and conditional transitions display granular text coloring based
on which outcomes are satisfied. Green indicates satisfied outcomes and red indicates unsatisfied
outcomes. For example, consider the following chart:

In this example, the if statement has evaluated to both true and false and therefore has full decision
coverage. Within the statement, condition a > 0 evaluated to both true and false and has full
condition coverage. Condition b > 0, however, evaluated to true but not false and therefore has only
partial condition coverage.

5 Coverage Collection During Simulation

5-98

Granular text coloring appears for charts and transitions using both C and MATLAB as the action
language.

 Model Coverage Display for Stateflow Charts

5-99

Model Coverage for Stateflow Atomic Subcharts
In a Stateflow chart, an atomic subchart is a graphical object that allows you to reuse the same state
or subchart across multiple charts and models.

When you specify to record coverage data for a model during simulation, Simulink Coverage records
coverage for any atomic subcharts in your model. The coverage data records the execution of the
chart itself, and the execution of states, transition decisions, and individual conditions that compose
each decision in the atomic subchart.

Simulate the sf_atomic_iodata_fixed example model and record decision coverage:

1 Open the Stateflow example Map Input and Output Data for an Atomic Subchart.

openExample('stateflow/AtomicSubchartInOutDataExample');

Open the sf_atomic_iodata_fixed model.

open_system('sf_atomic_iodata_fixed')

This model contains two Sine Wave blocks that supply input signals to the Stateflow chart. This
chart contains two atomic subcharts—A and B—that are linked from the same library chart, also
named A. The library chart contains the following objects:

2 In the Simulink Editor, select Model Settings on the Modeling tab. Select the Coverage pane
of the Configuration Parameters dialog box.

3 Select Enable coverage analysis and then select Entire System.
4 Click OK to close the Configuration Parameters dialog box.
5 Simulate the sf_atomic_iodata_fixed model by clicking the Run button.

When the simulation completes, the coverage report opens.

The report provides coverage data for atomic subcharts A and B in the following forms:

• For the atomic subchart instance and its contents. Decision coverage is not applicable (NA)
because this chart does not have an explicit trigger.

5 Coverage Collection During Simulation

5-100

• For the library chart A and its contents. The chart itself achieves 100% coverage on the input u1,
and 88% coverage on the states and transitions inside the library chart.

Atomic subchart B is a copy of the same library chart A. The coverage of the contents of subchart
B is identical to the coverage of the contents of subchart A.

 Model Coverage for Stateflow Atomic Subcharts

5-101

Model Coverage for Stateflow Truth Tables

In this section...
“Types of Coverage in Stateflow Truth Tables” on page 5-102
“Analyze Coverage in Stateflow Truth Tables” on page 5-102

Types of Coverage in Stateflow Truth Tables

Simulink Coverage reports model coverage for the decisions the objects make in a Stateflow chart
during simulation. The report includes coverage for the decisions the truth table functions make.

For this type of truth
table...

The report includes coverage data for...

Stateflow Classic Conditions only.
MATLAB Conditions and only those actions that have decision points.

Note With the MATLAB for code generation action language, you can
specify decision points in actions using control flow constructs, such as
loops and switch statements.

Note To measure model coverage data for a Stateflow truth table, you must have a Stateflow license.
For more information about Stateflow truth tables, see “Obtain Cumulative Coverage for Reusable
Subsystems” on page 5-33.

Analyze Coverage in Stateflow Truth Tables
If you have a Stateflow license, you can generate a model coverage report for a truth table.

Consider the following model.

The Stateflow chart contains the following truth table:

5 Coverage Collection During Simulation

5-102

When you simulate the model and collect coverage, the model coverage report includes the following
data:

 Model Coverage for Stateflow Truth Tables

5-103

The Coverage (this object) column shows no coverage. The reason is that the container object for
the truth table function—the Stateflow chart—does not decide whether to execute the ttable truth
table.

The Coverage (inc. descendants) column shows coverage for the truth table contents. Coverage for
the descendants in the Coverage (inc. descendants) column includes coverage for the conditions
and decisions of the logical expressions represented by the truth table.

Coverage for the decisions and their individual conditions in the ttable truth table function are as
follows:

Coverage Explanation
No model coverage for the default decision,
D4

All logic that leads to taking a default decision is
based on a false outcome for all preceding decisions.
This means that the default decision requires no
logic, so there is no model coverage.

5 Coverage Collection During Simulation

5-104

Coverage Explanation
17% (1/6) decision coverage The three constants that are inputs to the truth table

(1, 0, 0) cause only decision D1 to be true. These
inputs satisfy only one of the six decisions (D1
through D3, T or F).

Because each condition can have an outcome value
of T or F, three conditions can have six possible
values.

17% (3/18) condition coverage Three decisions D1, D2, and D3 have condition
coverage, because the set of inputs (1, 0, 0) make
only decision D1 true.

0% (0/9) MCDC coverage MCDC coverage looks for decision reversals that
occur because one condition outcome changes from
T to F or F to T. The simulation tests only one set of
inputs, so the model reverses no decisions.

Missing coverage The red letters T and F indicate that model coverage
is missing for those conditions. For decision D1, only
the T decision is satisfied. For decisions D2, D3, and
D4, none of the conditions are satisfied.

 Model Coverage for Stateflow Truth Tables

5-105

Model Coverage for Variant Blocks
Simulink Coverage can analyze and report coverage data for models containing variant blocks, such
as Variant Source or Variant Subsystem blocks. When you simulate a model containing one or more
variant blocks with coverage enabled, Simulink Coverage reports the coverage results depending on
the type of variant block and the Variant activation time parameter.

For Variant Source and Variant Sink blocks, Simulink Coverage analyzes the upstream and
downstream blocks of the variant choices, respectively. The Variant Source and Variant Sink block
itself does not receive coverage. For Variant Subsystem and Variant Model blocks, Simulink Coverage
analyzes the contents of the subsystem or model blocks for the selected metrics.

Update-Time and Compile-Time Variants
If you set the Variant activation time parameter of a variant block to update diagram, update
diagram analyze all choices, or code compile, Simulink Coverage reports coverage only for
the variant choice that is active during the simulation.

Tip You cannot aggregate coverage for simulations with different active variant choices for update-
time or compile-time variants. If you want to test inactive variant choices, set Variant activation
time to startup.

For example, suppose you have a model that contains a Variant Subsystem block with two variant
choices. The Variant activation time parameter of the Variant Subsystem block is set to update
diagram.

5 Coverage Collection During Simulation

5-106

If Subsystem1 is active for the simulation, you receive coverage results for Subsystem1 and not
Subsystem2.

 Model Coverage for Variant Blocks

5-107

In the coverage results, Subsystem1 is red, which indicates that it received incomplete coverage,
and Subsystem2 is grey which indicates that it was not analyzed. Additionally, the coverage report
summary omits the variant choices that were not active.

When you set the Variant activation time parameter of a variant block to update diagram,
update diagram analyze all choices, or code compile, changing the active variant is a
structural change to the model. Because the coverage data for a model is only valid as long as the
model is not changed or closed, you cannot aggregate coverage for the same model simulated with
different active variants. If you want to test multiple active variants and aggregate coverage for them,
change the Variant activation time parameter to startup.

Startup Variants
If you set the Variant activation time parameter of a variant block to startup, Simulink Coverage
reports coverage for all variant choices, even if they are not active during the simulation. You can
also aggregate coverage for simulations with different active variant choices.

5 Coverage Collection During Simulation

5-108

For example, if you modify the model in the previous example and set the Variant activation time to
startup and Subsystem1 is active for the simulation, you get the same coverage for Subsystem1 as
the case with the update time variant. However, Simulink Coverage also reports on the inactive
variant, Subsystem2.

In the coverage results, Subsystem1 and Subsystem2 are both red which indicates incomplete
coverage. The coverage report summary includes both variant choices.

The inactive variants receive 0% coverage because they were not executed during the simulation. To
increase the reported coverage for Variant_Subsystem, you can simulate the model again with
Subsystem2 as the active variant and then aggregate the coverage results.

 Model Coverage for Variant Blocks

5-109

Customizing the Coverage Report for Models that Contain Variants
When creating a coverage report for a model that uses variant blocks, you can aggregate coverage
data from multiple simulations and specify whether to include or exclude inactive variants.

Exclude Inactive Variants from the Coverage Report

Inactive configurations of update-time and compile-time Simulink variants are excluded from the
coverage report.

For Simulink variant blocks that have the Variant activation time parameter set to startup and
variant configurations in Stateflow charts, the coverage report includes inactive variant choices by
default. You can choose to exclude the inactive variant choices in the coverage report by selecting the
Exclude inactive choices of variants parameter:

1 In the Configuration Parameters window, in the left pane, click Coverage.
2 Expand Advanced parameters and then select Exclude inactive choices of variants.

You can also set this parameter programmatically by entering:

set_param(modelName,'CovExcludeInactiveVariants',1)

If you are using the Test Manager in Simulink Test, you can select Exclude inactive variants in the
coverage settings at the test file level. For more information, see “Coverage Settings” (Simulink Test).

You can also change the reporting behavior of startup Simulink variants and variant configurations in
Stateflow charts after your simulation completes using one of these methods:

5 Coverage Collection During Simulation

5-110

• In the Coverage Results Explorer, select or clear the option Exclude inactive choices of
variants.

• Change the value of the “excludeInactiveVariants” property in the cvdata object before
generating the coverage report.

• If you are using the Test Manager in Simulink Test, in the Test Browser, at the results summary
level, under Aggregated coverage results, select Exclude inactive variants.

Aggregate Coverage Data for Models that Contain Variants

There are two ways to aggregate coverage data for models that contain Simulink variants and variant
configurations in Stateflow charts:

• In the Configuration Parameters dialog box, click Coverage, then expand Advanced parameters
and select the Include cumulative data in coverage report parameter. When you run two or
more simulations with this parameter selected, the Coverage Details shows the aggregated
coverage results of those simulations.

• Run coverage analysis programmatically and aggregate the cvdata objects by using the +
operator.

If you aggregate two cvdata objects that have different values for the excludeInactiveVariants
property, either by using the + operator or by changing the Exclude inactive choices of variants
parameter, the resulting aggregated cvdata object has this property set to a value of 0. The result is
that the aggregated coverage report shows inactive variants as if the Exclude inactive choices of
variants parameter is not selected, even if the parameter was selected for one simulation.

See Also

Related Examples
• “Variant Systems”
• “Cumulative Coverage Analysis” on page 3-17
• “Model Objects That Receive Coverage” on page 2-2
• “Collect Coverage Data Using a Script” on page 8-2

See Also
cvdata | Variant Subsystem, Variant Model, Variant Assembly Subsystem | Variant Source | Variant
Sink

 Model Coverage for Variant Blocks

5-111

Collect Coverage for Multiple Simulations by Using Design
Studies

This example shows how to collect coverage when running multiple simulations. To learn more about
running multiple simulations, see “Run Multiple Simulations”.

The slvnvdemo_powerwindow_parsim model contains a power window controller and a low-order
plant model. A Stateflow® chart implements the controller.

Load the Design Study

Design studies allow you to run a series of simulations where each simulation changes one parameter
at a time. You can collect coverage on the simulations to test different sets of model inputs without
manually running each simulation. For more information about creating design studies, see
“Configure and Run Simulations with Multiple Simulations Panel”.

To open the Multiple Simulations pane, on the Simulation tab, under Prepare, click Multiple
Simulations.

5 Coverage Collection During Simulation

5-112

To load the design study file, click the Load file containing design studies icon at the top of the
Multiple Simulations pane. In the Select File to Open window, select
slvnvdemo_powerwindow_multisim.mldatx.

This file contains two design studies:

The Driver Scenario design study contains two simulations. In both simulations, the Signal Editor
block Input parameter Active Scenario is set to Driver. In the first simulation, the Active Signal
parameter is set to Driver Up, and in the second simulation the parameter is set to Driver Down.
These settings simulate the driver-side power window receiving input to raise and lower the window.

The Passenger Scenario design study contains two simulations. In both simulations, the Signal
Editor block Input parameter Active Scenario is set to Passenger. In the first simulation, the
Active Signal parameter is set to Passenger Up, and in the second simulation the parameter is set
to Passenger Down. These settings simulate the passenger-side power window receiving input to
raise and lower the window.

Enable Coverage Analysis

Next, enable coverage for the model. On the Modeling tab, click Model Settings. In the left pane,
click Coverage and then select Enable coverage analysis. Click OK.

Run Simulations and Review Coverage Results

In the Multiple Simulations pane, select Driver Scenario. On the Apps tab, select Coverage
Analyzer. In the Coverage tab, click Analyze Coverage > Run All (Coverage)
Starting parallel pool (parpool) using the 'Processes' profile ...
Connected to parallel pool with 20 workers.

After the simulations complete, the Coverage Details pane opens and displays the aggregated
coverage results for the two simulations in the Driver Scenario.

 Collect Coverage for Multiple Simulations by Using Design Studies

5-113

The coverage results for all of the simulations are populated into the Coverage Results Explorer. To
open the Coverage Results Explorer, on the Coverage tab, click Results Explorer.

In the left pane of the Coverage Results Explorer, you can see the two simulations for the Driver
Scenario design study and the current cumulative results. In the left pane, click Current
Cumulative Data. In the Coverage Data pane, the description lists the design study name and a list
of the block and parameter names specified in the design study. The Tag field lists the scenario
specified for each run.

In the Simulink® window, in the Multiple Simulations pane, select Passenger Scenario. This
action automatically clears the Driver Scenario design study because you can only select one design
study at a time. On the Coverage tab, click Analyze Coverage > Run All (Coverage).

The Coverage Details pane updates with aggregated data from the two additional simulations in the
Passenger Scenario design study. Scroll to the Aggregated Tests section to see four simulations: two
from the Driver Scenario design study, and two from the Passenger Scenario design study.

5 Coverage Collection During Simulation

5-114

In the Coverage Results Explorer, click Current Cumulative Data to see that the additional
simulations improved the coverage results.

 Collect Coverage for Multiple Simulations by Using Design Studies

5-115

Additionally, you can click each run to see that the aggregated coverage data displays more complete
coverage than either of the individual runs. The different coverage results indicate that the different
simulations satisfied different coverage outcomes.

To generate a standalone report for these results, in the Simulink® window, on the Coverage tab,
click Generate Report. Alternatively, in the Coverage Results Explorer, in the left pane, click
Current Cumulative Data and then click Generate report.

See Also
sim | parsim

Related Examples
• “Run Multiple Simulations”

5 Coverage Collection During Simulation

5-116

Results Review

• “Types of Coverage Reports” on page 6-2
• “Top-Level Model Coverage Report” on page 6-11
• “Code Coverage Report” on page 6-40
• “Export Model Coverage Web View” on page 6-58

6

Types of Coverage Reports
Simulink Coverage can create coverage reports for a model, some model elements, and for code
integrated into a model or code generated from a model. To generate a coverage report, use one of
the following methods:

• Click the Run (Coverage) button to simulate the model. When the simulation completes, you see
the coverage report open in the Coverage Details pane.

• On the Coverage tab, click Results Explorer. Use one of the following two methods to generate
a coverage report using the Coverage Results Explorer:

• Click Highlight model with coverage results to highlight the model and open the Coverage
Details pane.

• Click Generate report to create a standalone report that can be viewed separately from the
Simulink model.

Use one of these method when you have coverage results but do not see the Coverage Details
pane, such as when loading coverage results from a file.

• Use cvhtml if you generate or load your coverage data programmatically.

Report Type Description HTML Report File Name
“Top-Level Model Coverage Report” on
page 6-11

Provides coverage information
for all the model and its model
elements.

model_name_cov.html

“Model Summary Report” on page 6-3 Provides links to coverage results
for referenced models and
external MATLAB files in the
model hierarchy. Created when
the top-level model includes
Model blocks or calls one or more
external files.

model_name
active_summary_cov.html

“Model Reference Coverage Report” on
page 6-4

Created for each referenced
model in the model hierarchy.
This report has the same format
as the top-level model coverage
report.

reference_model_name
_cov.html

“External MATLAB File Coverage
Report” on page 6-4

Provides detailed coverage
information about the MATLAB
files that the model calls. There is
one report for each external file.

MATLAB_file_name
_cov.html

“Subsystem Coverage Report” on page 6-
8

Provides coverage results for the
selected subsystem.

model_name_cov.html, where
model_name is the name of the
top-level model

“Code Coverage Report” on page 6-9 Provides coverage information
for C/C++ code in custom code
blocks and models in SIL mode.

model_name_block_name
_instance_n_cov.html, or
model_name_cov.html

6 Results Review

6-2

Model Summary Report
If the top-level model contains Model blocks or calls external files, Simulink Coverage creates a
model summary coverage report named model_name_active_summary_cov.html. The title of this
report is Coverage by Model.

The model summary report lists and links to the coverage reports for the referenced models and
external files called by the MATLAB code in the model. For more information, see “External MATLAB
File Coverage Report” on page 6-4.

When you click a link from the Coverage Details pane, you can use the Return to Model Summary
Report link to return to the top-level report.

This graphic shows an example of a manually generated model summary report. It contains links to
the model coverage report (mExternalMfile), a report for the Model block (mExternalMfileRef),
and three external files called from the model (externalmfile,I externalmfile1,
andexternalmfile2).

 Types of Coverage Reports

6-3

Model Reference Coverage Report
If your top-level model references a model in a Model block, the software creates a separate model
reference report, named reference_model_name_cov.html, that includes coverage for the
referenced model. This report has the same format as the “Top-Level Model Coverage Report” on
page 6-11 and does not indicate that the model is referenced in a Model block.

External MATLAB File Coverage Report
If your top-level model calls any external MATLAB files, you can enable the external MATLAB file
coverage report by selecting MATLAB files on the Coverage pane in the Configuration Parameters
dialog box. The software creates a report, named MATLAB_file_name_cov.html, for each file
called from the model. When the model makes several calls to a given file, the software creates only
one report for that file, but it accumulates coverage from all the calls to the file. The external
MATLAB file coverage report does not include information about what parts of the model call the
external file.

The first section of the external MATLAB file coverage report contains summary information about
the external file, similar to the top-level model coverage report.

6 Results Review

6-4

The Details section reports coverage for the external file and the function in that file.

 Types of Coverage Reports

6-5

The Details section also lists the content of the file, and highlights the code lines that have decision
points or function definitions.

6 Results Review

6-6

The coverage results for each of the highlighted code lines follow in the report. This graphic shows a
portion of these coverage results from the preceding code example.

 Types of Coverage Reports

6-7

Subsystem Coverage Report
If you want to create a model coverage report for individual subsystems, you can create a subsystem
coverage report. In the Coverage pane of the Configuration Parameters dialog box, select Enable
coverage analysis, then click Select Subsystem to analyse coverage for the selected subsystem.
The software creates a model coverage report for the top-level model, but includes coverage results
only for the subsystem.

If the top-level model calls any external files and you select MATLAB files in the Coverage pane in
the Configuration Parameters dialog box, the results include coverage for all external files called
from:

• The subsystem for which you are recording coverage
• The top-level model that includes the subsystem

If the subsystem parameter Read/Write Permissions is set to NoReadOrWrite, the software does
not record coverage for that subsystem.

For example, in the fuelsys model, suppose that you click Select Subsystem and select coverage
for the feedforward_fuel_rate subsystem.

6 Results Review

6-8

The report is similar to the model coverage report, except that it includes only results for the
feedforward_fuel_rate subsystem and its contents.

Code Coverage Report
For each custom code block, such as S-Function and C Caller blocks, the model coverage report links
to a detailed code coverage report for the C/C++ code in the block. For MATLAB Function blocks that

 Types of Coverage Reports

6-9

call external MATLAB files, the model coverage report links to a detailed code coverage report for
each external MATLAB file. For more information on how S-Functions appear in the report, see “View
Coverage Results for Custom C/C++ Code in S-Function Blocks” on page 5-74.

If you have Embedded Coder installed, you can also generate code coverage reports from models in
software-in-the-loop (SIL) or processor-in-the-loop (PIL) mode. For more information on how to
generate code coverage reports for models in SIL or PIL mode, see “Code Coverage for Models in
Software-in-the-Loop (SIL) Mode and Processor-in-the-Loop (PIL) Mode” on page 4-6. For more
information about the code coverage report, see “Code Coverage Report” on page 6-40.

See Also
cvhtml | cvdata

Related Examples
• “Use Simulink Coverage to Analyze Your Model”
• “Analyze Coverage Data Using A Script” on page 8-4
• “Basic Operation of the Model Coverage Tool”

6 Results Review

6-10

Top-Level Model Coverage Report

In this section...
“Analysis Information” on page 6-11
“Aggregated Tests” on page 6-12
“Coverage Summary” on page 6-13
“Details” on page 6-14
“Cyclomatic Complexity in the Model Coverage Report” on page 6-22
“Decisions Analyzed” on page 6-24
“Conditions Analyzed” on page 6-25
“MCDC Analysis” on page 6-25
“Cumulative Coverage” on page 6-26
“N-Dimensional Lookup Table” on page 6-28
“Block Reduction” on page 6-32
“Relational Boundary” on page 6-33
“Saturate on Integer Overflow Analysis” on page 6-35
“Signal Range Analysis” on page 6-36
“Signal Size Coverage for Variable-Dimension Signals” on page 6-37
“Simulink Design Verifier Coverage” on page 6-38

If you simulate your model using the Run button, Simulink Coverage creates a model coverage report
for the specified model named model_name_cov.html. The model coverage report is also opened
automatically in the Coverage Details pane. The model coverage report contains several sections:

To access the sldemo_fuelsys model, execute the following command in the MATLAB command
window:

openExample('ModelingAFaultTolerantFuelControlSystemExample');

Analysis Information
The analysis information section contains basic information about the model being analyzed:

• Coverage Data Information
• Model Information
• Harness Information (appears if you record coverage from a Simulink Test harness)
• Simulation Optimization Options
• Coverage Options

 Top-Level Model Coverage Report

6-11

Aggregated Tests
The aggregated tests section appears if you:

• Record aggregated coverage results for at least two test cases through the Simulink Test Manager
and produce a coverage report for the aggregated results, or

• Produce a coverage report for cumulative coverage results in the Results Explorer.

If you run test cases through the Simulink Test Manager, the aggregated tests section links to the
associated test cases in the Simulink Test Manager.

If you aggregate test case results through the Results Explorer, the aggregated tests section links to
the corresponding cvdata node in the Results Explorer.

For each run in the aggregated tests section, there is a link to the corresponding results in the
Simulink Test Manager or the Results Explorer.

6 Results Review

6-12

Aggregated Unit Tests

If you record coverage for one or more subsystem harnesses, the Aggregated Tests section lists each
unit test run, and the Description section displays the description given to the aggregated coverage
data. You can see and edit this description by going to the Coverage Results Explorer and clicking
Current Cumulative Data.

Each unit under test receives an ordinal number n, and each test for a unit under test receives an
ordinal number m in the style Un.m.

Coverage Summary
The coverage summary has two subsections:

 Top-Level Model Coverage Report

6-13

• Tests — The simulation start and stop time of each test case and any setup commands that
preceded the simulation. The heading for each test case includes any test case label specified
using the cvtest command. This section only shows when the report does not contain an
“Aggregated Tests” on page 6-12 section.

• Summary — Summaries of the subsystem results. To see detailed results for a specific subsystem,
in the Summary subsection, click the subsystem name.

The Summary section contains a column for each requested coverage metric, even for metrics that
are not applicable to the model or model objects analyzed. For example, in the sldemo_fuelsys
model, if you select the Objectives and constraints coverage metric, you get columns titled Test
Objective, Proof Objective, Test Condition, and Proof Assumption, even though the model does
not contain blocks that Simulink Coverage can analyze for these metrics.

Details
The Details section reports the detailed model coverage results. Each section of the detailed report
summarizes the results for the metrics that test each object in the model:

• “Filtered Objects” on page 6-15
• “Model Details” on page 6-15
• “Subsystem Details” on page 6-16
• “Block Details” on page 6-16
• “Chart Details” on page 6-17
• “Coverage Details for MATLAB Functions and Simulink Design Verifier Functions” on page 6-18

6 Results Review

6-14

• “Requirement Testing Details” on page 6-21

You can also access a model element Details subsection as follows:

1 Right-click a Simulink element.
2 In the context menu, select Coverage > Report.

Filtered Objects

The Filtered Objects section lists all the objects in the model that were filtered from coverage
recording, and the rationale you specified for filtering those objects. If the filter rule specifies that all
blocks of a certain type be filtered, all those blocks are listed here.

In the following graphic, several blocks, subsystems, and transitions were filtered. Two library-linked
blocks, protected division and protected division1, were filtered because their block library was
filtered.

Model Details

The Details section contains a results summary for the model as a whole, followed by a list of
elements. Click the model element name to see its coverage results.

The following graphic shows the Details section for the sldemo_fuelsys example model.

 Top-Level Model Coverage Report

6-15

Subsystem Details

Each subsystem Details section contains a summary of the test coverage results for the subsystem
and a list of the subsystems it contains. The overview is followed by sections for blocks, charts, and
MATLAB functions, one for each object that contains a decision point in the subsystem.

The following graphic shows the coverage results for the Engine Gas Dynamics subsystem in the
sldemo_fuelsys example model.

Block Details

The following graphic shows decision coverage results for the MinMax block in the Mixing &
Combustion subsystem of the Engine Gas Dynamics subsystem in the sldemo_fuelsys example
model.

6 Results Review

6-16

The Uncovered Links element first appears in the Block Details section of the first block in the model
hierarchy that does not achieve 100% coverage. The first Uncovered Links element has an arrow that
links to the Block Details section in the report of the next block that does not achieve 100% coverage.

Subsequent blocks that do not achieve 100% coverage have links to the Block Details sections in the
report of the previous and next blocks that do not achieve 100% coverage.

Chart Details

The following graphic shows the coverage results for the Stateflow chart control_logic in the
sldemo_fuelsys example model.

 Top-Level Model Coverage Report

6-17

For more information about model coverage reports for Stateflow charts and their objects, see
“Model Coverage for Stateflow Charts” on page 5-81.

Coverage Details for MATLAB Functions and Simulink Design Verifier Functions

By default, Simulink Coverage records coverage for all MATLAB functions in a model. MATLAB
functions are in MATLAB Function blocks, Stateflow charts, or external MATLAB files.

Note For a detailed example of coverage reports for external MATLAB files, see “External MATLAB
File Coverage Report” on page 6-4.

6 Results Review

6-18

To record Simulink Design Verifier coverage for sldv.* functions called by MATLAB functions, and
any Simulink Design Verifier blocks, select Objectives and Constraints on the Coverage pane of
the Configuration Parameters dialog box.

The following example shows coverage details for a MATLAB function, hFcnsInExternalEML, that
calls four Simulink Design Verifier functions. In this example, the code for hFcnsInExternalEML
resides in an external file.

This example also shows Simulink Design Verifier coverage details for the following functions:

• sldv.assume
• sldv.condition
• sldv.prove
• sldv.test

In the coverage results, code that achieves 100% coverage is green. Code that achieves less than
100% coverage is red.

 Top-Level Model Coverage Report

6-19

Coverage for the hFcnsInExternalEML function and the sldv.* calls is:

• Line 1, the function declaration for hFcnsInExternalEMLis green because the simulation
executes that function at least once. fcn calls hFcnsInExternalEML 11 times during simulation.

Line 4, sldv.assume(u1 > u2), achieves 0% coverage because u1 > u2 never evaluates to
true.

• Line 5, sldv.condition(u1 == 0), achieves 100% coverage because u1 == 0 evaluates to
true for at least one time step.

• Line 6, switch u1, achieves 25% coverage because only one of the four outcomes in the switch
statement (case 0) occurs during simulation.

6 Results Review

6-20

• Line 17, sldv.test(y > u1); sldv.test (y == 4) achieves 50% coverage. The first
sldv.test call achieves 100% coverage, but the second sldv.test call achieves 0% coverage.

For more information about coverage for MATLAB functions, see “Model Coverage for MATLAB
Functions” on page 5-46.

For more information about coverage for Simulink Design Verifier functions, see “Objectives and
Constraints Coverage” on page 1-7.

Requirement Testing Details

If you run at least two test cases in Simulink Test that are linked to requirements in Requirements
Toolbox, the aggregated coverage report details the links between model elements, test cases, and
linked requirements.

The Requirement Testing Details section includes:

• Implemented Requirements — Which requirements are linked to the model element.
• Verified by Tests — Which tests verify the requirement.
• Associated Runs — Which runs are associated with each verification test.

 Top-Level Model Coverage Report

6-21

For an example of how to trace coverage results to requirements in a coverage report, see “Trace
Coverage Results to Requirements” on page 5-37.

Cyclomatic Complexity in the Model Coverage Report
You can specify that the model coverage report include cyclomatic complexity numbers in two
locations in the report:

• The Summary section contains the cyclomatic complexity numbers for each object in the model
hierarchy. For a subsystem or Stateflow chart, that number includes the cyclomatic complexity
numbers for all their descendants.

6 Results Review

6-22

• The Details sections for each object list the cyclomatic complexity numbers for all individual
objects.

 Top-Level Model Coverage Report

6-23

Decisions Analyzed
The Decisions analyzed table lists possible outcomes for a decision and the number of times that an
outcome occurred in each test simulation. Outcomes that did not occur are in red highlighted table
rows.

The following graphic shows the Decisions analyzed table for the Saturate block in the Throttle &
Manifold subsystem of the Engine Gas Dynamics subsystem in the sldemo_fuelsys example model.

To display and highlight the block in question, click the block name at the top of the section
containing the block’s Decisions analyzed table.

6 Results Review

6-24

Conditions Analyzed
The Conditions analyzed table lists the number of occurrences of true and false conditions on each
input port of the corresponding block.

MCDC Analysis
The MCDC analysis table lists the MCDC input condition cases represented by the corresponding
block and the extent to which the reported test cases cover the condition cases.

Each row of the MCDC analysis table represents a condition case for a particular input to the block. A
condition case for input n of a block is a combination of input values. Input n is called the deciding
input of the condition case. Changing the value of input n alone changes the value of the block's
output.

The MCDC analysis table shows a condition case expression to represent a condition case. A
condition case expression is a character string where:

• The position of a character in the string corresponds to the input port number.
• The character at the position represents the value of the input. (T means true; F means false).
• A boldface character corresponds to the value of the deciding input.

For example, FTF represents a condition case for a three-input block where the second input is the
deciding input.

The Decision/Condition column specifies the deciding input for an input condition case. The True Out
column specifies the deciding input value that causes the block to output a true value for a condition
case. The True Out entry uses a condition case expression, for example, FF, to express the values of
all the inputs to the block, with the value of the deciding variable in bold.

 Top-Level Model Coverage Report

6-25

Parentheses around the expression indicate that the specified combination of inputs did not occur
during the first (or only) test case included in this report. In other words, the test case did not cover
the corresponding condition case. The False Out column specifies the deciding input value that
causes the block to output a false value and whether the value actually occurred during the first (or
only) test case included in the report.

Some model elements achieve less MCDC coverage depending on the MCDC definition used during
analysis. For more information on how the MCDC definition used during analysis affects the coverage
results, see “Modified Condition and Decision Coverage (MCDC) Definitions in Simulink Coverage” on
page 5-3.

If you select Treat Simulink Logic blocks as short-circuited in the Coverage pane in the
Configuration Parameters dialog box, MCDC coverage analysis does not verify whether short-
circuited inputs actually occur. The MCDC analysis table uses an x in a condition expression (for
example, TFxxx) to indicate short-circuited inputs that were not analyzed by the tool.

If you disable this feature and Logic blocks are not short-circuited while collecting model coverage,
you might not be able to achieve 100% coverage for that block.

Select the Treat Simulink Logic blocks as short-circuited option for where you want the MCDC
coverage analysis to approximate the degree of coverage that your test cases achieve for the
generated code (most high-level languages short-circuit logic expressions).

Cumulative Coverage
After you record successive coverage results, you can “Access, Manage, and Aggregate Coverage
Results” on page 3-7 from within the Coverage Results Explorer. By default, the results of each
simulation are saved and recorded cumulatively in the report.

If you select Show cumulative progress report in the “Results” on page 3-6 section of the
configuration parameters, the results located in the right-most area in all tables of the cumulative
coverage report reflect the running total value. The report is organized so that you can easily
compare the additional coverage from the most recent run with the coverage from all prior runs in
the session.

A cumulative coverage report contains information about:

• Current Run — The coverage results of the simulation just completed.
• Delta — Percentage of coverage added to the cumulative coverage achieved with the simulation

just completed. If the previous simulation's cumulative coverage and the current coverage are
nonzero, the delta may be 0 if the new coverage does not add to the cumulative coverage.

• Cumulative — The total coverage collected for the model up to, and including, the simulation just
completed.

After running three test cases, the Summary report shows how much additional coverage the third
test case achieved and the cumulative coverage achieved for the first two test cases.

6 Results Review

6-26

The Decisions analyzed table for cumulative coverage contains three columns of data about decision
outcomes that represent the current run, the delta since the last run, and the cumulative data,
respectively.

The Conditions analyzed table uses column headers #n T and #n F to indicate results for individual
test cases. The table uses Tot T and Tot F for the cumulative results. You can identify the true and
false conditions on each input port of the corresponding block for each test case.

The MCDC analysis #n True Out and #n False Out columns show the condition cases for each test
case. The Total Out T and Total Out F column show the cumulative results.

 Top-Level Model Coverage Report

6-27

Note You can calculate cumulative coverage for reusable subsystems and Stateflow constructs at the
command line. For more information, see “Obtain Cumulative Coverage for Reusable Subsystems” on
page 5-33.

N-Dimensional Lookup Table

The following interactive chart summarizes the extent to which elements of a lookup table are
accessed. In this example, two Sine Wave blocks generate x and y indices that access a 2-D Lookup
Table block of 10-by-10 elements filled with random values.

In this model, the lookup table indices are 1, 2,..., 10 in each direction. The Sine Wave 2 block is out
of phase with the Sine Wave 1 block by pi/2 radians. This generates x and y numbers for the edge of a
circle, which you see when you examine the resulting Lookup Table coverage.

6 Results Review

6-28

The report contains a two-dimensional table representing the elements of the lookup table. The
element indices are represented by the cell border grid lines, which number 10 in each dimension.
Areas where the lookup table interpolates between table values are represented by the cell areas.
Areas of extrapolation left of element 1 and right of element 10 are represented by cells at the edge
of the table, which have no outside border.

Note The coverage report only generates the Look-up Table Details image for lookup tables that
have 400 or fewer interpolation or extrapolation intervals.

The number of values interpolated or extrapolated for each cell (execution counts) during testing is
represented by a shade of green assigned to the cell. Each of six levels of green shading and the
range of execution counts represented are displayed on one side of the table.

If you click an individual table cell, you see a dialog box that displays the index location of the cell
and the exact number of execution counts generated for it during testing. The following example
shows the contents of a color-shaded cell on the right edge of the circle.

 Top-Level Model Coverage Report

6-29

The selected cell is outlined in red. You can also click the extrapolation cells on the edge of the table.

A bold grid line indicates that at least one block input equal to its exact index value occurred during
the simulation. Click the border to display the exact number of hits for that index value.

The following example model uses an n-D Lookup Table block of 10-by-10-by-5 elements filled with
random values.

Both the x and y table axes have the indices 1, 2,..., 10. The z axis has the indices 10, 20,..., 50.
Lookup table values are accessed with x and y indices that the two Sine Wave blocks generated, in
the preceding example, and a z index that a Ramp block generates.

After simulation, you see the following lookup table report.

6 Results Review

6-30

Instead of a two-dimensional table, the link Force Map Generation displays the following tables:

Lookup table coverage for a three-dimensional lookup table block is reported as a set of two-
dimensional tables.

The vertical bars represent the exact z index values: 10, 20, 30, 40, 50. If a vertical bar is bold, this
indicates that at least one block input was equal to the exact index value it represents during the
simulation. Click a bar to get a coverage report for the exact index value that bar represents.

You can report lookup table coverage for lookup tables of any dimension. Coverage for four-
dimensional tables is reported as sets of three-dimensional sets, like those in the preceding example.
Five-dimensional tables are reported as sets of sets of three-dimensional sets, and so on.

 Top-Level Model Coverage Report

6-31

Block Reduction
All model coverage reports indicate the status of the Simulink Block reduction parameter at the
beginning of the report. In the following example, you set Force block reduction off.

In the next example, you enabled the Simulink Block reduction parameter, and you did not set
Force block reduction off.

Consider the following model where the simulation does not execute the MinMax1 block because
there is only one input — In3.

If you set Force block reduction off, the report contains no coverage data for this block because the
minimum input to the MinMax1 block is always 1.

If you do not set Force block reduction off, the report contains no coverage data for reduced
blocks.

6 Results Review

6-32

Relational Boundary
On the “Coverage Pane” on page 3-2 of the Configuration Parameters dialog box, if you select the
Relational Boundary coverage metric, the software creates a Relational Boundary table in the
model coverage report for each model object that is supported for this coverage. The table applies to
the explicit or implicit relational operation involved in the model object. For more information, see:

• “Relational Boundary Coverage” on page 1-8.
• The Relational Boundary column in “Model Objects That Receive Coverage” on page 2-2.

The tables below show the relational boundary coverage report for the relation input1 <= input2.
The appearance of the tables depend on the operand data type.

• “Integers” on page 6-33
• “Fixed point” on page 6-34
• “Floating point” on page 6-34

Integers

If both operands are integers (or if one operand is an integer and the other a Boolean), the table
appears as follows.

For a relational operation such as operand_1 <= operand_2:

• The first row states the two operands in the form operand_1 - operand_2.
• The second row states the number of times during the simulation that operand_1 - operand_2

is equal to -1.
• The third row states the number of times during the simulation that operand_1 is equal to

operand_2.

 Top-Level Model Coverage Report

6-33

• The fourth row states the number of times during the simulation that operand_1 - operand_2
is equal to 1.

Fixed point

If one of the operands has fixed-point type and the other operand is either a fixed point or an integer,
the table appears as follows. LSB represents the value of the least significant bit. For more
information, see “Precision” (Fixed-Point Designer). If the two operands have different precision, the
smaller value of precision is used.

For a relational operation such as operand_1 <= operand_2:

• The first row states the two operands in the form operand_1 - operand_2.
• The second row states the number of times during the simulation that operand_1 - operand_2

is equal to -LSB.
• The third row states the number of times during the simulation that operand_1 is equal to

operand_2.
• The fourth row states the number of times during the simulation that operand_1 - operand_2

is equal to LSB.

Floating point

If one of the operands has floating-point type, the table appears as follows. tol represents a value
computed using the input values and a tolerance that you specify. If you do not specify a tolerance,
the default values are used. For more information, see “Relational Boundary Coverage” on page 1-8.

For a relational operation such as operand_1 <= operand_2:

• The first row states the two operands in the form operand_1 - operand_2.

6 Results Review

6-34

• The second row states the number of times during the simulation that operand_1 - operand_2
has values in the range [-tol..0].

• The third row states the number of times during the simulation that operand_1 - operand_2
has values in the range (0..tol] during the simulation.

The appearance of this table changes according to the relational operator in the block. Depending on
the relational operator, the value of operand_1 - operand_2 equal to 0 is either:

• Excluded from relational boundary coverage.
• Included in the region above the relational boundary.
• Included in the region below the relational boundary.

Relational Operator Report Format Explanation
== [-tol..0) 0 is excluded.

(0..tol]
!= [-tol..0) 0 is excluded.

(0..tol]
<= [-tol..0] 0 is included in the region below

the relational boundary.(0..tol]
< [-tol..0) 0 is included in the region above

the relational boundary.[0..tol]
>= [-tol..0) 0 is included in the region above

the relational boundary.[0..tol]
> [-tol..0] 0 is included in the region below

the relational boundary.(0..tol]

0 is included below the relational boundary for <= but above the relational boundary for <. This rule
is consistent with decision coverage. For instance:

• For the relation input1 <= input2, the decision is true if input1 is less than or equal to
input2. < and = are grouped together. Therefore, 0 lies in the region below the relational
boundary.

• For the relation input1 < input2, the decision is true only if input1 is less than input2. > and
= are grouped together. Therefore, 0 lies in the region above the relational boundary.

Saturate on Integer Overflow Analysis
On the “Coverage Pane” on page 3-2 of the Configuration Parameters dialog box, if you select the
Saturate on integer overflow coverage metric, the software creates a Saturation on Overflow
analyzed table in the model coverage report. The software creates the table for each block with the
Saturate on integer overflow parameter selected.

The Saturation on Overflow analyzed table lists the number of times a block saturates on integer
overflow, indicating a true decision. If the block does not saturate on integer overflow, the table
indicates a false decision. Outcomes that do not occur are in red highlighted table rows.

 Top-Level Model Coverage Report

6-35

The following graphic shows the Saturation on Overflow analyzed table for the MinMax block in the
Mixing & Combustion subsystem of the Engine Gas Dynamics subsystem in the sldemo_fuelsys
example model.

To display and highlight the block in question, click the block name at the top of the section
containing the block’s Saturation on Overflow analyzed table.

Signal Range Analysis
If you select the Signal Range coverage metric, the software creates a Signal Range Analysis section
at the bottom of the model coverage report. This section lists the maximum and minimum signal
values for each output signal in the model measured during simulation.

Access the Signal Range Analysis report quickly with the Signal Ranges link in the nonscrolling
region at the top of the model coverage report, as shown below in the sldemo_fuelsys example
model report.

6 Results Review

6-36

Each block is reported in hierarchical fashion; child blocks appear directly under parent blocks. Each
block name in the Signal Ranges report is a link. For example, select the EGO sensor link to display
this block highlighted in its native diagram.

Signal Size Coverage for Variable-Dimension Signals
If you select Signal Size, the software creates a Variable Signal Widths section after the Signal
Ranges data in the model coverage report. This section lists the maximum and minimum signal sizes
for all output ports in the model that have variable-size signals. It also lists the memory that Simulink
allocated for that signal, as measured during simulation. This list does not include signals whose size
does not vary during simulation.

The following example shows the Variable Signal Widths section in a coverage report. In this
example, the Abs block signal size varied from 2 to 5, with an allocation of 5.

 Top-Level Model Coverage Report

6-37

Each block is reported in hierarchical fashion; child blocks appear directly under parent blocks. Each
block name in the Variable Signal Widths list is a link. Clicking on the link highlights the
corresponding block in the Simulink Editor. After the analysis, the variable-size signals have a wider
line design.

Simulink Design Verifier Coverage
If you select Objectives and Constraints, the analysis collects coverage data for all Simulink Design
Verifier blocks in your model.

For an example of how this works, open the sldvdemo_debounce_testobjblks model.

This model contains two Test Objective blocks:

• The True block defines a property that the signal have a value of 2.
• The Edge block, inside the Masked Objective subsystem, describes the property where the output

of the AND block in the Masked Objective subsystem changes from 2 to 1.

The Simulink Design Verifier software analyzes this model and produces a harness model that
contains test cases that achieve certain test objectives. To see if the original model achieves those
objectives, simulate the harness model and collect model coverage data. The model coverage tool
analyzes any decision points or values within an interval that you specify in the Test Objective block.

In this example, the coverage report shows that you achieved 100% coverage of the True block
because the signal value was 2 at least once. The signal value was 2 in 6 out of 14 time steps.

6 Results Review

6-38

The input signal to the Edge block achieved a value of True once out of 14 time steps.

 Top-Level Model Coverage Report

6-39

Code Coverage Report
In this section...
“Analysis Information” on page 6-40
“Aggregated Tests” on page 6-42
“Summary” on page 6-43
“Details” on page 6-44
“Cyclomatic Complexity” on page 6-47
“Decisions Analyzed” on page 6-48
“Conditions Analyzed” on page 6-50
“MCDC Analysis” on page 6-50
“Cumulative Coverage” on page 6-52
“Relational Boundary” on page 6-54

If you simulate your model in software-in-the-loop (SIL) or processor-in-the-loop (PIL) mode using the
Run button in the SIL/PIL Manager app, Simulink Coverage creates a code coverage report for the
code generated from the specified model named model_name_cov.html. There are other ways to
create code coverage reports, such as collecting model coverage for a model that contains custom
C/C++ blocks such as S-Functions or C Caller blocks. For more information about types of reports,
see “Types of Coverage Reports” on page 6-2.

For a model run in SIL/PIL mode, the code coverage report is also opened automatically in the
Coverage Details pane.

Analysis Information
The analysis information section contains basic information about the model or file analyzed:

6 Results Review

6-40

 Code Coverage Report

6-41

1 Coverage Data Information — displays the MATLAB release version used to collect the
coverage data.

2 Model Information — displays some model metadata such as the version number, author, and
date and time it was last saved.

3 Harness Information — appears if you collect coverage from a Simulink Test harness. It
provides some information about the harness used.

4 File Information — displays some data about the file(s) generated during code generation.
5 Coverage Options — displays the configuration parameters selection values at the time when

coverage was analyzed. If a filter is applied, the filter name also appears here.
6 Objects Filtered from Coverage Analysis — shows the name and full path of the coverage

filter file, all the expressions or coverage objective outcomes that were filtered from coverage
analysis, and the rationale specified for filtering them.

Aggregated Tests
The aggregated tests section appears if you:

• Record aggregated coverage results for at least two test cases through the Simulink Test Manager
and produce a coverage report for the aggregated results, or

• Produce a coverage report for cumulative coverage results in the Coverage Results Explorer.

If you run test cases through the Simulink Test Manager, the aggregated tests section links to the
associated test cases in the Simulink Test Manager.

If you aggregate test case results through the Results Explorer, the aggregated tests section links to
the corresponding cvdata node in the Results Explorer.

For each run in the aggregated tests section, there is a link to the corresponding results in the
Simulink Test Manager or the Coverage Results Explorer.

Aggregated Unit Tests

If you record coverage for one or more subsystem harnesses, the Aggregated Tests section lists each
unit test run.

Each unit under test receives an ordinal number n, and each test for a unit under test receives an
ordinal number m in the style Un.m.

6 Results Review

6-42

Summary
The coverage summary has two subsections:

• “Tests” on page 6-44
• “Summary” on page 6-44

 Code Coverage Report

6-43

Tests

The Tests section contains the simulation start and stop time of each test case and any setup
commands that preceded the simulation. The heading for each test case includes any test case label
specified using the cvtest command. This section only shows when the report does not contain an
“Aggregated Tests” on page 6-12 section.

Summary

The Summary section contains summaries of the code coverage results reported by file and function.
To see detailed results for a specific file or function, in the summary subsection, click the file or
function name.

Each file and function has a row in the summary table. The first column of the summary table
represents the cyclomatic complexity of that file or function. For example, the file
sldemo_fuelsys.c has a cyclomatic complexity of 123. Then, each following column is labeled with
the coverage metric to which it applies. Each column displays the coverage results for a metric in
percentage of coverage objective outcomes which are satisfied. The blue section of the bar indicates
satisfied objective outcomes, and the pink part of the bar indicates missing coverage. Justified
objective outcomes are indicated by a light blue or cyan section of the bar. You can see a justified
objective in the example image on line 2... look1_binlx

Details
The Details section reports the detailed code coverage results. Each subsection of the Details section
displays a results summary for a file or function in the analyzed code.

6 Results Review

6-44

• “File Details” on page 6-45
• “Function Details” on page 6-46
• “Requirement Testing Details” on page 6-46

You can access a model object Details By Model Object subsection by left-clicking on the model
object.

File Details

The File Details section contains a results summary for the code file as a whole, followed by a list of
functions. Click the function name to go to its applicable subsection of Details.

For example, if you run the model sldemo_fuelsys in SIL mode, the generated code is located in
sldemo_fuelsys.c.

The coverage percentages in the File subsection is the total coverage of each of the functions
contained within the file. You can click on a function name to view its specific coverage details.

 Code Coverage Report

6-45

Function Details

Each function details section contains a summary of the test coverage results for the function, a list of
the expressions it contains, and links to the parent file and the associated model object.

The following graphic shows the coverage results for the rt_ertODEUpdateeContinuousStates
function for the SIL mode simulation of the sldemo_fuelsys example model.

Requirement Testing Details

If you run at least two test cases in Simulink Test that are linked to requirements in Requirements
Toolbox, the aggregated coverage report details the links between model elements, test cases, and
linked requirements.

The Requirement Testing Details section includes:

• Implemented Requirements — Which requirements are linked to the model element.
• Verified by Tests — Which tests verify the requirement.
• Associated Runs — Which runs are associated with each verification test.

6 Results Review

6-46

For an example of how to trace coverage results to requirements in a coverage report, see “Trace
Coverage Results to Requirements” on page 5-37.

Cyclomatic Complexity
You can specify that the model coverage report include cyclomatic complexity numbers in two
locations in the report:

• The Summary section contains the cyclomatic complexity numbers for each object in the model
hierarchy. For a file or function, that number includes the cyclomatic complexity numbers for all
their descendants.

 Code Coverage Report

6-47

• The Details sections for each object list the cyclomatic complexity numbers for all individual
objects.

Decisions Analyzed
The code coverage report contains a section for each decision within a function. The Decisions
analyzed table lists possible outcomes for a decision and the number of times that an outcome
occurred in each test simulation. Outcomes that did not occur are in red highlighted table rows. By
default, you do not see the Decisions analyzed table for decisions which receive 100% decision
coverage. For more information about coverage reporting options, see “Accessing Coverage Data
from the Results Explorer” on page 3-7.

6 Results Review

6-48

In this example, the decision u1 < 0.0 is false for every time step, so the decision receives 50%
decision coverage.

 Code Coverage Report

6-49

Clicking on the function link rt_remd scrolls up to the part of the Details section which displays the
function results. Clicking on the model object link sldemo_fuelsys opens the model with coverage
highlighting.

Conditions Analyzed
The Conditions analyzed table lists the number of occurrences of true and false condition outcomes
for each condition within a function or file.

In this example, the condition that u is not equal to 0, u != 0.0, is true for every time step, and the
condition that u is not equal to u1_0, u1 != u1_0 is false for every time step. As a result, each
condition receives 50% condition coverage, resulting in 50% condition coverage for the parent
expression.

MCDC Analysis
The MCDC analysis table lists the MCDC input condition cases and the extent to which the reported
test cases cover the condition cases.

6 Results Review

6-50

Each row of the MCDC analysis table represents a condition case for a particular input to the
expression. A condition case for input n of a block is a combination of input values. Input n is called
the deciding input of the condition case. Changing the value of input n alone changes the value of the
block's output.

The MCDC analysis table shows a condition case expression to represent a condition case. A
condition case expression is a character string where:

• The position of a character in the string corresponds to the input port number.
• The character at the position represents the value of the input. (T means true; F means false; x

means the condition value does not matter due to short-circuiting).
• A boldface character corresponds to the value of the deciding input.

For example, FTF represents a condition case for a three-input expression where the second input is
the deciding input.

The Decision/Condition column specifies the deciding input for an input condition case. The True Out
column specifies the deciding input value that causes the block to output a true value for a condition
case. The True Out entry uses a condition case expression, for example, FF, to express the values of
all the inputs to the expression, with the value of the deciding variable in bold.

 Code Coverage Report

6-51

Parentheses around the expression indicate that the specified combination of inputs did not occur
during the first (or only) test case included in this report. In other words, the test case did not cover
the corresponding condition case. The False Out column specifies the deciding input value that
causes the block to output a false value and whether the value actually occurred during the first (or
only) test case included in the report.

Some model elements achieve less MCDC coverage depending on the MCDC definition used during
analysis. For more information on how the MCDC definition used during analysis affects the coverage
results, see “Modified Condition and Decision Coverage (MCDC) Definitions in Simulink Coverage” on
page 5-3.

If you select Treat Simulink Logic blocks as short-circuited in the Coverage pane in the
Configuration Parameters dialog box, MCDC coverage analysis does not verify whether short-
circuited inputs actually occur. The MCDC analysis table uses an x in a condition expression (for
example, TFxxx) to indicate short-circuited inputs.

If you disable this feature and Logic blocks are not short-circuited while collecting model coverage,
you might not be able to achieve 100% coverage for that block.

Select the Treat Simulink Logic blocks as short-circuited option for where you want the MCDC
coverage analysis to approximate the degree of coverage that your test cases achieve for the
generated code (most high-level languages short-circuit logic expressions).

Cumulative Coverage
After you record successive coverage results, you can “Access, Manage, and Aggregate Coverage
Results” on page 3-7 from within the Coverage Results Explorer. By default, the results of each
simulation are saved and recorded cumulatively in the report.

If you select Show cumulative progress report in the Settings pane of the Coverage Results
Explorer, the results located in the right-most area in all tables of the cumulative coverage report
reflect the running total value. The report is organized so that you can easily compare the additional
coverage from the most recent run with the coverage from all prior runs in the session.

A cumulative coverage report contains information about:

• Current Run — The coverage results of the simulation just completed.
• Delta — Percentage of coverage added to the cumulative coverage achieved with the simulation

just completed. If the previous simulation's cumulative coverage and the current coverage are
nonzero, the delta may be 0 if the new coverage does not add to the cumulative coverage.

• Cumulative — The total coverage collected for the model up to, and including, the simulation just
completed.

After running three test cases, the Summary report shows how much additional coverage the third
test case achieved and the cumulative coverage achieved for the first two test cases.

6 Results Review

6-52

Decisions Analyzed

The Decisions analyzed table for cumulative coverage contains three columns of data about
decision outcomes that represent the current run, the delta since the last run, and the cumulative
data, respectively.

For example, in the decision table for u < 0.0, the decision is false at every time step in run 1, and
remained the same for run 2, so the column #2 does not add additional coverage for the decision,
resulting in 50% decision coverage for both run 1 and the total.

Conditions Analyzed

The Conditions analyzed table uses column headers #n T and #n F to indicate results for individual
test cases. The table uses Total T and Total F for the cumulative results. You can identify the true
and false conditions on each input port of the corresponding block for each test case.

For example, the pictured condition table displays a Conditions analyzed table with cumulative
coverage results. The condition u != 0.0 is true at every time step during run 1, with no change in
run 2, resulting in 50% total condition coverage. The condition u1 != u1_0 is false at every time
step during run 1, with no change in run 2 resulting in 50% total condition coverage.

MCDC Analysis

The MCDC analysis #n True Out and #n False Out columns show the condition cases for each test
case. The Total Out T and Total Out F column show the cumulative results.

 Code Coverage Report

6-53

Note You can calculate cumulative coverage for reusable subsystems and Stateflow constructs at the
command line. For more information, see “Obtain Cumulative Coverage for Reusable Subsystems” on
page 5-33.

Relational Boundary Analyzed

The Relational Boundary analyzed table for cumulative coverage contains three columns of data
about relational boundary outcomes that represent the current run, the delta since the last run, and
the cumulative data, respectively.

For example, the relational boundary analyzed for the expression rtmIsMajorTimeStep(rtM)
shows 67% relational boundary coverage from run 1 and run 2 does not add additional coverage,
resulting in a total 67% relational boundary coverage.

Relational Boundary
If you collect Relational Boundary coverage, Simulink Coverage creates a Relational Boundary
table in the code coverage report for expressions that receive relational boundary coverage. The
table applies to the explicit or implicit relational operation involved. For more information, see
“Relational Boundary Coverage” on page 1-8.

6 Results Review

6-54

The tables below show the relational boundary coverage report for the relation input1 <= input2.
The appearance of the tables depend on the operand data type.

• “Integers” on page 6-55
• “Fixed point” on page 6-55
• “Floating point” on page 6-56

Integers

If both operands are integers (or if one operand is an integer and the other a Boolean), the table
appears as follows.

For a relational operation such as operand_1 <= operand_2:

• The first row states the two operands in the form operand_1 - operand_2.
• The second row states the number of times during the simulation that operand_1 - operand_2

is equal to -1.
• The third row states the number of times during the simulation that operand_1 is equal to

operand_2.
• The fourth row states the number of times during the simulation that operand_1 - operand_2

is equal to 1.

Fixed point

If one of the operands has fixed-point type and the other operand is either a fixed point or an integer,
the table appears as follows. LSB represents the value of the least significant bit. For more
information, see “Precision” (Fixed-Point Designer). If the two operands have different precision, the
smaller value of precision is used.

 Code Coverage Report

6-55

For a relational operation such as operand_1 <= operand_2:

• The first row states the two operands in the form operand_1 - operand_2.
• The second row states the number of times during the simulation that operand_1 - operand_2

is equal to -LSB.
• The third row states the number of times during the simulation that operand_1 is equal to

operand_2.
• The fourth row states the number of times during the simulation that operand_1 - operand_2

is equal to LSB.

Floating point

If one of the operands has floating-point type, the table appears as follows. tol represents a value
computed using the input values and a tolerance that you specify. If you do not specify a tolerance,
the default values are used. For more information, see “Relational Boundary Coverage” on page 1-8.

For a relational operation such as operand_1 <= operand_2:

• The first row states the two operands in the form operand_1 - operand_2.
• The second row states the number of times during the simulation that operand_1 - operand_2

has values in the range [-tol..0].
• The third row states the number of times during the simulation that operand_1 - operand_2

has values in the range (0..tol] during the simulation.

The appearance of this table changes according to the relational operator in the block. Depending on
the relational operator, the value of operand_1 - operand_2 equal to 0 is either:

• Excluded from relational boundary coverage.
• Included in the region above the relational boundary.
• Included in the region below the relational boundary.

Relational Operator Report Format Explanation
== [-tol..0) 0 is excluded.

(0..tol]
!= [-tol..0) 0 is excluded.

(0..tol]
<= [-tol..0] 0 is included in the region below

the relational boundary.(0..tol]

6 Results Review

6-56

Relational Operator Report Format Explanation
< [-tol..0) 0 is included in the region above

the relational boundary.[0..tol]
>= [-tol..0) 0 is included in the region above

the relational boundary.[0..tol]
> [-tol..0] 0 is included in the region below

the relational boundary.(0..tol]

0 is included below the relational boundary for <= but above the relational boundary for <. This rule
is consistent with decision coverage. For instance:

• For the relation input1 <= input2, the decision is true if input1 is less than or equal to
input2. < and = are grouped together. Therefore, 0 lies in the region below the relational
boundary.

• For the relation input1 < input2, the decision is true only if input1 is less than input2. > and
= are grouped together. Therefore, 0 lies in the region above the relational boundary.

See Also
cvhtml

Related Examples
• “Types of Coverage Reports” on page 6-2
• “Software-in-the-Loop Code Coverage” on page 4-21
• “Cumulative Coverage Analysis” on page 3-17
• “Accessing Coverage Data from the Results Explorer” on page 3-7

 Code Coverage Report

6-57

Export Model Coverage Web View
You can export a Model Coverage Web View for your model. A Web View is an interactive rendition of
a model that you can view in a Web browser. A Model Coverage Web View includes model coverage
highlighting and analysis information from the Coverage Display Window, as described in “View
Coverage Results in Simulink Canvas” on page 5-21.

Use the Results Explorer to generate a Model Coverage Web View. After you record coverage, you
access the Results Explorer from the Coverage app. In the Results Explorer, open the Settings,
select Generate Web View Report, and click Apply.

Next, select the Current Cumulative Data click Generate report.

When you generate a coverage report for your model with these settings enabled, the software
generates a Model Coverage Web View that you can open in a browser. To see model coverage
information for a block in a Model Coverage Web View, click that block. The model coverage data
appears in the Informer pane, below the model.

For more information, see “Web Views” (Simulink Report Generator).

6 Results Review

6-58

Filtering in Simulink Coverage

• “Coverage Filtering” on page 7-2
• “Coverage Filter Rules and Files” on page 7-4
• “Model Objects to Filter from Coverage” on page 7-5
• “Create, Edit, and View Coverage Filter Rules” on page 7-6
• “View Applied Filters in the Coverage Results Explorer” on page 7-10
• “Creating and Using Coverage Filters” on page 7-11

7

Coverage Filtering

In this section...
“When to Use Coverage Filtering” on page 7-2
“What Is Coverage Filtering?” on page 7-2

When to Use Coverage Filtering
Use coverage filtering to facilitate a bottom-up approach to recording model coverage. If you have a
large model, there can be design elements that intentionally do not record 100% coverage. You can
also have several design elements that you require to record 100% coverage but that do not achieve
100% coverage. You can temporarily or permanently eliminate these elements from coverage
recording to focus on a subset of objects for testing and modification.

You can then iterate more efficiently—focus on a small issue, fix it, and then move on to resolve the
next small issue. Before recording coverage for the entire model, you can resolve missing coverage
issues within individual parts of the model.

What Is Coverage Filtering?
Coverage filtering enables you to exclude certain model objects from model coverage reporting after
you simulate your Simulink model. You specify which objects you want to filter from coverage
recording. There are two modes of filtering, Excluded and Justified.

Excluded objects do not contribute to coverage reports. After you specify the objects to exclude when
you simulate your model, the coverage report does not record coverage for those objects.

Justified objects do contribute to coverage reports. After you specify the objects to justify when you
simulate your model, the coverage report considers these blocks as achieving 100% coverage, and
they appear light blue in the “Coverage Summary” on page 6-13.

In the “Details” on page 6-14 section of the coverage report, justified objects show their coverage
outcomes as ((covered outcomes + justified outcomes)/possible decisions).

7 Filtering in Simulink Coverage

7-2

To filter objects, see “Create, Edit, and View Coverage Filter Rules” on page 7-6 and “Creating and
Using Coverage Filters” on page 7-11.

 Coverage Filtering

7-3

Coverage Filter Rules and Files
In this section...
“What Is a Coverage Filter Rule?” on page 7-4
“What Is a Coverage Filter File?” on page 7-4

What Is a Coverage Filter Rule?
A coverage filter rule specifies a model object, a set of objects, or lines of code that you want to
exclude from coverage recording or that you want to justify for coverage.

Each coverage filter rule includes the following fields:

• Name—Name or path of the object to filter from coverage
• Type—Whether a specific object is filtered or all objects of a given type are filtered
• Mode—Whether the object to be filtered is Excluded or Justified

Coverage reports do not include Excluded blocks. The coverage reports assume that Justified
blocks receive full coverage, but show that they are distinct from other covered blocks in the
coverage report.

• Rationale—An optional description that describes why this object is filtered from coverage

What Is a Coverage Filter File?
A coverage filter file is a set of coverage filter rules. Each rule specifies one or more objects or lines
of code to exclude from coverage recording.

After you create and apply coverage filter rules, the specified objects or lines of code are excluded
from coverage when you generate a report. You can reuse a coverage filter file for several Simulink
models.

When you make changes to the coverage filter rules after you record coverage, you can update the
coverage report without needing to resimulate your model. After you make changes, click Apply, then
click Generate Report in the Applied filters section of the coverage Results Explorer to update the
report.

If you use the default file name for the active model, and the coverage filter file exists on the MATLAB
path, you see the coverage filter rules each time that you open the model. To save your current
coverage filter rules to a file, click Save filter. To load an existing coverage filter file, click Load
filter.

For more information on filtering objects, see “Create, Edit, and View Coverage Filter Rules” on page
7-6 and “Creating and Using Coverage Filters” on page 7-11.

7 Filtering in Simulink Coverage

7-4

Model Objects to Filter from Coverage
In your model, the objects that you can filter from coverage recording are:

• Simulink blocks that receive coverage, including MATLAB Function blocks
• Subsystems and their contents. When you exclude a subsystem from coverage recording, none of

the objects inside the subsystem record coverage.
• Individual library-linked blocks or charts
• All reference blocks linked to a library
• Stateflow charts, subcharts, states, transitions, and events

For a complete list of model objects that receive coverage, see “Model Objects That Receive
Coverage” on page 2-2.

 Model Objects to Filter from Coverage

7-5

Create, Edit, and View Coverage Filter Rules

In this section...
“Create and Edit Coverage Filter Rules” on page 7-6
“Save Coverage Filter to File” on page 7-8
“Create New Coverage Filter File” on page 7-8
“Load Coverage Filter File” on page 7-8
“Remove Applied Coverage Filter” on page 7-9
“Manage Applied filters by Using the Test Manager in Simulink Test” on page 7-9
“Update the Report with the Current Filter Settings” on page 7-9
“View Coverage Filter Rules in Your Model” on page 7-9

Create and Edit Coverage Filter Rules
• “Create a Coverage Filter Rule” on page 7-6
• “Select the Filtering Mode” on page 7-7
• “Add Rationale to a Coverage Filter Rule” on page 7-7
• “Justify Dead Logic from Simulink Design Verifier Dead Logic Analysis” on page 7-7
• “Justify Dead Logic from Polyspace Code Prover Results” on page 7-8

Create a Coverage Filter Rule

To create a coverage filter rule:

1 Enable model coverage.
2 To record coverage results, simulate the model.
3 Create a new filter rule in one of these ways:

• In the model window, right-click a model object and select Coverage > Exclude.
• In the Details section of the Coverage Report, click Justify or Exclude for a model object.
• Create a new coverage filter file directly from the coverage Results Explorer:

a Click Applied filters.
b Click New filter.
c Enter a Name and Description for the filter.
d Click Save as.
e Specify a file name and folder for the filter file and click Save.

Alternatively, you can right-click the Applied filters label and select New filter

Depending on which option you select, the Type field in the “View Applied Filters in the Coverage
Results Explorer” on page 7-10 is set for the coverage filter rule you selected. You cannot override
the value in the Type field.

7 Filtering in Simulink Coverage

7-6

Select the Filtering Mode

When you create a filtering rule, the default filtering mode is Excluded. Excluded objects do not
appear in the coverage reports. You can also set the filtering mode to Justified. Justified blocks
appear as achieving 100% coverage.

For more information, see “Coverage Filtering” on page 7-2.

Add Rationale to a Coverage Filter Rule

Optionally, you can add text that describes why you exclude that object or objects from coverage
recording. This information can be useful to others who review the coverage for your model. When
you add a coverage filter rule, the Applied filters section of the coverage Results Explorer opens. To
add the rationale:

1 Double-click the Rationale field for the rule.
2 Delete the existing text.
3 Add the rationale for excluding this object.

Note The Rationale field and Mode field are the only coverage filter rule fields that you can edit in
the Applied filters section of the coverage Results Explorer.

After you add a new coverage filter rule or edit an existing coverage filter rule, click Apply to enable
the Generate report and Highlight model with coverage results links.

Justify Dead Logic from Simulink Design Verifier Dead Logic Analysis

You can create justification rules in the coverage Results Explorer using the dead logic detected
during a Simulink Design Verifier Dead Logic Analysis.

1 Open the Results Explorer from the Coverage app.
2 Click Applied filters to access the coverage filters.
3 Click Make justification filter rules for dead logic (using Simulink Design Verifier).

Simulink Design Verifier runs the Dead Logic Analysis and populates the list of filters.
4 Click Generate report.

The justified rules from the previous step are shown in the Objects Filtered from Coverage
Analysis section at the beginning of the report. To navigate to the rules’ corresponding items in
the Details section of the report, use the hyperlinks in the rule descriptions. Clicking the
hyperlinks in the Rationale column navigates to the coverage Results Explorer.

 Create, Edit, and View Coverage Filter Rules

7-7

You can add justification rules for elements that do not receive coverage to the filter by clicking
 in the Details section of the report.

Justify Dead Logic from Polyspace Code Prover Results

You can create justification rules for code coverage in the coverage Results Explorer using Polyspace
Code Prover results.

1 Open the Results Explorer from the Coverage app.
2 Click Applied filters to access the coverage filters.
3 Click Make justification filter rules for dead logic (using Polyspace Code Prover results).

Opens a file selection window so you can provide a Polyspace Code Prover results file.
4 Click Generate report.

Save Coverage Filter to File
After you define the coverage filter rules, save the rules to a file so that you can reuse them with this
model or other models. By default, coverage filter files are named <model_name>_covfilter.cvf.

1 In the Apps tab, click Coverage Analyzer. In the Coverage tab, open the coverage Results
Explorer.

2 Click Applied filters, then select your filter.
3 Enter a Name and Description for the filter, if none already exist.
4 Click Apply. A save dialog box opens.
5 Specify a file name and folder for the filter file and click Save.

If you make multiple changes to the coverage filter rules, apply the changes to the coverage filter file
each time.

Create New Coverage Filter File
You can create a new coverage filter file directly from the coverage Results Explorer.

1 Click Applied filters.
2 Click New filter. Alternatively, you can right-click Applied filters and select New filter.
3 Enter a Name and Description for the filter.
4 Click Apply. A save dialog box opens.
5 Specify a file name and folder for the filter file and click Save.

Load Coverage Filter File
After you save a coverage filter file, you can load the coverage filter file for use in other models. In
the coverage Results Explorer:

1 Click Applied filters.
2 Click Load filter. Alternatively, you can right-click Applied filters and select Load filter.
3 Navigate to the filter file and click Open.

7 Filtering in Simulink Coverage

7-8

You can load multiple coverage filter files for any model. Loaded filter files show in the Applied
filters section of the coverage Results Explorer.

Two or more models can have the same coverage filter file attached. If a model has an attached filter
file that contains coverage filter rules for specific objects in a different model, those rules are ignored
during coverage recording.

Remove Applied Coverage Filter
To remove an applied coverage filter, from the coverage Results Explorer:

1 Expand the Applied filters.
2 Right-click the coverage filter you want to remove and select Remove.

Manage Applied filters by Using the Test Manager in Simulink Test
You can also add and remove coverage filter files from the Test Manager in Simulink Test. For more
information, see “Coverage Filtering Using the Test Manager” (Simulink Test).

Update the Report with the Current Filter Settings
If you change the filtering settings or add filters after you simulate the model, you can update the
coverage report and model highlighting without resimulating the model. After you have simulated the
model, in the Current Cumulative Data section of the Applied filters section of the coverage Results
Explorer:

1 Apply or Revert any changes you have made.
2 Click Generate Report.

View Coverage Filter Rules in Your Model
Whenever you define a coverage filter rule or remove an existing coverage filter rule, the Applied
filters section of the coverage Results Explorer opens. This pane lists the coverage filter rules for
your applied filters. For more information, see “View Applied Filters in the Coverage Results
Explorer” on page 7-10.

The list of currently applied filters for a model is available in the Applied filters section of the
coverage Results Explorer. Alternatively, you can right-click anywhere in the model window and select
Coverage > Open Filter Viewer.

If you are inside a subsystem, you can view any coverage filter rule attached to the subsystem. To
open the Applied filters section of the coverage Results Explorer, right-click any object inside the
subsystem and select Coverage > Show filter parent.

 Create, Edit, and View Coverage Filter Rules

7-9

View Applied Filters in the Coverage Results Explorer

In the Applied filters section of the coverage Results Explorer, you can:

• Review and manage the coverage filter rules for your Simulink model.
• Create, load, or save coverage filter files for your model.
• Navigate to the model to create additional coverage filter rules.

To access the Applied filters section of the coverage Results Explorer:

• “Create a Coverage Filter Rule” on page 7-6
• From the Coverage Analyzer app, open the coverage Results Explorer. Currently applied filters are

listed under the Applied filters label, or you can create a new coverage filter file.

To Action
Navigate to a model object associated with a rule. 1 Select the rule.

2 Click View in model.
Delete a rule. 1 Select the rule.

2 Click Remove rule.
Save the current rules to a file. 1 Click Save filter.

2 Specify a file name and folder for the filter
file and click Save.

Load an existing coverage filter file. 1 Click Load filter.
2 Navigate to the filter file and click Open.

Create a new coverage filter file. 1 Right-click Applied filters and select New
filter.

Update the current coverage report with the
current filtering rules.

1 Apply or Revert any changes you have
made.

2 Click Generate Report.

7 Filtering in Simulink Coverage

7-10

Creating and Using Coverage Filters

This example shows how to use Simulink® Coverage™ model coverage filters to exclude model
elements from coverage analysis and justify missing coverage in reports.

Coverage Filters

During the verification process, a model can contain several constructs that prevent full model
coverage, such as a subsystem that contains a driver for a controller that is not tested and is not
relevant to the validation process. You can exclude this subsystem from the coverage results.

Alternatively, you may have testing criteria that requires exercising certain aspects of a block, such
as hitting particular decision points. If it is not feasible to satisfy all coverage outcomes for this block,
and you did not intend for your tests to exercise these unsatisfied outcomes, then you can justify the
missing coverage.

Filtering these constructs in coverage results by excluding or justifying them allows you to focus on
other aspects of missing coverage that can and should be tested.

Coverage filters are stored in CVF files. Each filter consists of rules that exclude or justify certain
model objects or individual coverage objective outcomes. You can apply multiple filter files to
coverage results for a model. Multiple models can also use the same filter file.

You can create and apply coverage filters either before or after simulating a model.

Open Model

This example uses the slvnvdemo_covfilt model, which includes examples of common patterns
filtered from coverage results.

open_system('slvnvdemo_covfilt');

 Creating and Using Coverage Filters

7-11

Specify Items to Exclude from Coverage Results Before Simulation

The library block slvnvdemo_covfilt_lib/protected division protects against division by
zero. If you determine that your testing is not expected or intended to fully cover every instance of
this block in this context, you can exclude this block from the coverage results.

In the Simulink Editor, right-click the protected division library block and click Coverage >
Exclude referenced library: slvnvdemo_covfilt_lib/protected division to filter all references to
the library.

7 Filtering in Simulink Coverage

7-12

This opens the Filter Editor pane of the Coverage Results Explorer. Note that the Coverage
Results Explorer created a new filter file, initially named Untitled, and added a filter rule that
excludes all references to the library block.

 Creating and Using Coverage Filters

7-13

Specify a name and description for the new filter file by using the Name and Description fields. In
the table, double-click the Rationale field for the new rule and enter text describing why this block is
excluded, such as division by zero protection. Click Apply to save the filter file. A file dialog
prompts you to specify where to save this file.

7 Filtering in Simulink Coverage

7-14

Reuse Existing Filter File

If you have models that contains similar constructs, you can use a filter file in multiple models.

For example, the filter file Filter_Tick.cvf excludes the Stateflow temporal event tick from
coverage results. This event can never be false and, therefore, could prevent full condition and MCDC
coverage in any model using tick in event-based temporal logic in Stateflow.

Because slvnvdemo_covfilt/Mode Logic contains this construct, you can apply the filter file
Filter_Tick.cvf to the model.

To apply this existing filter file, right-click the Applied filters node in the Coverage Results
Explorer and select Load filter. In the file dialog, select Filter_Tick.cvf and click Open.

 Creating and Using Coverage Filters

7-15

Note that Applied filters now lists both Filter_DivBy0 and Filter_Tick.

7 Filtering in Simulink Coverage

7-16

Simulate and Review Filtered Coverage Results

Click the Run (Coverage) button to simulate the model and record coverage. When the simulation
completes, Simulink Coverage highlights the model with the coverage results and the Coverage
Details pane opens.

Both references to the protected division library block are dimmed in the Simulink canvas,
which indicates that Simulink Coverage does not analyze them due to the exclusion rule.

In the Coverage Details pane, the Objects Filtered from Coverage Analysis section lists each of
the excluded elements and the corresponding rationales for each. Both Filter_DivBy0 and
Filter_Tick appear here.

Create a New Filter File

Create another filter file to capture filter rules exclusively relevant to this model.

 Creating and Using Coverage Filters

7-17

In the Coverage Results Explorer, right-click the Applied filters node and select New filter.

Enter a name and description for this filter file. Click Apply and specify where to save the file.

7 Filtering in Simulink Coverage

7-18

Exclude Items from Coverage Results After Simulation

You can also create and apply filter rules to coverage results after simulation. This allows you to
review coverage results, create or adjust filters, and generate a new coverage report without having
to rerun the simulation.

For example, consider the Switchable config subsystem, which models a common design pattern
that uses constant values to drive subsystem enable ports to change model configurations. However,
the enable logic and subsystem contents might lead to missing coverage. Because this model does not
use this configuration, you can exclude it from coverage analysis.

In the Simulink Editor, click the Switchable config subsystem. The Coverage Details pane
displays the coverage details for this subsystem. Click the Justify or Exclude link.

 Creating and Using Coverage Filters

7-19

The link creates a new filter rule and adds it to the currently selected filter file in the Filter Editor
pane. In the Filter Rules section, the default setting for the Mode column is Excluded. Enter the
rationale for this rule, such as unused config.

7 Filtering in Simulink Coverage

7-20

Click Apply to save the changes to the filter file and update the coverage results. The Switchable
config subsystem is now dimmed, which indicates that the filter excluded it from the coverage
results.

 Creating and Using Coverage Filters

7-21

Justify Individual Objective Outcomes from the Coverage Results

In the Simulink Editor, click the Saturation block and review the coverage results in the Coverage
Details pane. Two decision outcomes are unsatisfied because the Saturation block has a lower
limit of 0 and an upper limit of 200. However, the input to this block is the rate signal, which can
never be less than or equal to 0. As such, the lower limit of the Saturation block is not fully
exercised, so you can justify the corresponding decision outcome.

Click the Add justification rule icon next to the false outcome for the decision input > lower
limit.

7 Filtering in Simulink Coverage

7-22

The Coverage Results Explorer adds a new filter rule to the currently selected filter file in the
Filter Editor pane. Specify a justification rationale, such as rate > 0.

Click Apply to save the filter file and update the coverage results.

 Creating and Using Coverage Filters

7-23

Note that, in the Coverage Details pane, the justified outcome of the Saturation block is light blue
and links to the rationale. Because you did not filter the true outcome of the decision input >=
upper limit and the analysis was insufficient to exercise this outcome, the Saturation block has
missing coverage and stays red.

7 Filtering in Simulink Coverage

7-24

Automatically Generate Filter Rules for Dead Logic

In some cases, missing coverage is due to dead logic and the associated coverage objectives are
unsatisfiable. If this logic is meant for elements that you do not wish to remove from your model, then
you can justify these missing coverage outcomes.

If you have a Simulink Design Verifier™ license, you can automatically create justification filter rules
for dead logic.

In the Coverage Results Explorer, select the Applied filters node. In the Filter Editor pane,
select Make justification filter rules for dead logic (using Simulink Design Verifier).

 Creating and Using Coverage Filters

7-25

This option uses Simulink Design Verifier™ to analyze the model for dead logic. Simulink Design
Verifier creates a new filter and adds justification rules for each of the corresponding coverage
outcomes.

7 Filtering in Simulink Coverage

7-26

Simulink Design Verifier detects and justifies dead logic for two condition outcomes, seven decision
outcomes, and one MCDC outcome.

Specify a name and description for this filter file. Click Apply when finished. In the file dialog, specify
where to save this filter file.

Close the Simulink Design Verifier Results windows.

Review Filtered Coverage Results

In the Simulink Editor, in the Coverage tab, in the Review Results section, select Coverage
Highlighting.

 Creating and Using Coverage Filters

7-27

After applying the four filters in this example, the simulation now achieves 100% condition, 63%
decision, and 75% execution coverage for this model. The coverage results no longer contain model
objects that receive MCDC, so the coverage report does not list this metric. The coverage report does
not display the MCDC outcome that the dead logic analysis filters out because the coverage filter
Filter_Tick contains an exclusion rule that eliminates that outcome from the report.

7 Filtering in Simulink Coverage

7-28

The remaining missing coverage in the Mode Logic chart, time capture subsystem, and
Saturation block indicates inadequate testing. You can address unresolved coverage of this type by
extending your testing to more thoroughly exercise these model elements.

 Creating and Using Coverage Filters

7-29

Automating Model Coverage Tasks

• “Automating Model Coverage Tasks” on page 8-2
• “Analyze Coverage Data Using A Script” on page 8-4
• “Command Line Verification Tutorial” on page 8-7
• “Extracting Detailed Information from Coverage Data” on page 8-16
• “Perform Operations on Coverage Data” on page 8-24
• “Record Coverage in Parallel Simulations by Using Parsim” on page 8-31
• “Filter Coverage Results Using a Script” on page 8-34

8

Automating Model Coverage Tasks
You can automate coverage analysis in a script by using the Simulink Coverage functions and classes.
For example, you might want to collect coverage data by simulating the same model with different
model parameters. Instead of changing parameters manually, you can run the simulations and collect
the coverage data in a loop.

Collect Coverage Data Using a Script

This example shows how to collect coverage data using sim.

Load the Model

First, load the model and the system you want to analyze into memory.

load_system('slvnvdemo_ratelim_harness');

Set Coverage Settings

Set up the coverage parameters using one of the methods described in sim, such as a simulation
input, parameter structure, or name-value pairs. For example, in order to use a structure of
parameters, set up a structure whose fields are names of configuration parameters, and whose values
are the corresponding values of those parameters.

paramStruct.CovEnable = 'on';
paramStruct.CovMetricStructuralLevel = 'Decision';
paramStruct.CovSaveSingleToWorkspaceVar = 'on';
paramStruct.CovSaveName = 'covData';
paramStruct.CovScope = 'Subsystem';
paramStruct.CovPath = '/Adjustable Rate Limiter';
paramStruct.StartTime = '0.0';
paramStruct.StopTime = '2.0';

For an example that uses the Simulink.SimulationInput object, see “Record Coverage in Parallel
Simulations by Using Parsim” on page 8-31.

Set up a Test and Simulate the Model

The example model uses input values that are defined in the MATLAB® workspace. The values used
in this example are defined in a data file called within_lim.mat. You can use load to load the file
into the workspace.

load within_lim.mat;

Simulate the model using sim with paramStruct as an additional input to collect coverage data
using the specified parameters.

simOut = sim('slvnvdemo_ratelim_harness',paramStruct);

For a complete list of Simulink Coverage configuration parameters, see “Coverage Settings”.

Generate a Coverage Report

You can generate an HTML report to view the coverage data that your simulation generates with
cvhtml. The first input is the name of the coverage report that will be saved in the current directory.

8 Automating Model Coverage Tasks

8-2

The second input is the cvdata object that was saved to the workspace based on the model
parameters CovSaveSingleToWorkspaceVar and CovSaveName.

You can generate the report without automatically opening it by using the flag '-sRT=0' as the third
input to cvhtml.

cvhtml('covReport',covData,'-sRT=0');

Save Coverage Data

Use cvsave to save the coverage results. The first input is the name of the coverage data file, and
the second input is the cvdata object.

cvsave('covdata',covData);

Close the Model

Exit the coverage environment by using cvexit and close the model by using close_system. A
second input of 0 indicates that you do not want to save model before closing.

cvexit
close_system('slvnvdemo_ratelim_harness',0);

Differences between sim and the Run Button
When you run a simulation with coverage enabled by using the Run button, the coverage report
opens automatically and Coverage Highlighting is enabled by default. When you run a simulation
programmatically by using sim, the coverage report does not open and Coverage Highlighting is
not enabled.

• To see coverage results displayed using model highlighting, use cvmodelview.
• To see a coverage report, use cvhtml.
• To open the Results Explorer, open the model in Simulink. In the Apps tab, click Coverage

Analyzer. Then click Results Explorer.

For another detailed example, see “Command Line Verification Tutorial” on page 8-7.

Collecting Coverage with Simulink Test
If you have a Simulink Test license, you can use the Test Manager to collect coverage data. For more
information, “Run a Test Case and Collect Coverage” (Simulink Test).

See Also
sim | Simulink.SimulationInput | cvsim | cvtest | cvhtml

More About
• “Analyze Coverage Data Using A Script” on page 8-4
• “Coverage Settings”
• “Record Coverage in Parallel Simulations by Using Parsim” on page 8-31

 Automating Model Coverage Tasks

8-3

Analyze Coverage Data Using A Script

This example shows how to load, parse, and query coverage data using a script.

Load Coverage Data

Load the model, then use the helper script setupCoverage. This script creates a simulation scenario
with coverage enabled. Use this to simulate the model and generate a
Simulink.SimulationOutput object that contains coverage results.

load_system('slvnvdemo_ratelim_harness');
setupCoverage
simOut = sim(covSet);
covData = simOut.covData;

Extract Information from Coverage Data Objects

Retrieve coverage information from a block path or block handle by using decisioninfo. The
output is a vector with the achieved and total outcomes for a single model object.

subsysCov = decisioninfo(covData,...
 'slvnvdemo_ratelim_harness/Adjustable Rate Limiter')

subsysCov =

 5 6

Determine the percentage coverage achieved by using decisioninfo.

percentCov = 100 * (subsysCov(1)/subsysCov(2))

percentCov =

 83.3333

Specify that you want to extract the decision coverage data for the switch block called Apply Limited
Gain by using decisioninfo. This returns a structure which contains the decisions and outcomes.

[blockCov,desc] = decisioninfo(covData, ...
 'slvnvdemo_ratelim_harness/Adjustable Rate Limiter/Apply limited gain');
descDecision = desc.decision;
outcome1 = desc.decision.outcome(1)
outcome2 = desc.decision.outcome(2)

outcome1 =

 struct with fields:

 text: 'false (out = in3)'
 executionCount: 0
 executedIn: []
 isFiltered: 0

8 Automating Model Coverage Tasks

8-4

 isJustified: 0
 filterRationale: ''

outcome2 =

 struct with fields:

 text: 'true (out = in1)'
 executionCount: 101
 executedIn: []
 isFiltered: 0
 isJustified: 0
 filterRationale: ''

From the decisioninfo output, you can see that the switch block called Apply Limited Gain was
never false because the false case executionCount field has a value of 0. If this behavior is
expected, and you did not intend to execute this case with your tests, you can add a filter rule to
justify this missing coverage using the slcoverage.Filter class.

First, query for the block instance to be filtered, because we only need to filter the one block instance
that received incomplete coverage, and not all instances of that block type. Then use the
slcoverage.BlockSelector class with the BlockInstance selector type to designate one block
instance for filtering.

id = getSimulinkBlockHandle('slvnvdemo_ratelim_harness/Adjustable Rate Limiter/Apply limited gain');
sel = slcoverage.BlockSelector(slcoverage.BlockSelectorType.BlockInstance,id);

Create a filter object and a filter rule using the slcoverage.Filter and
slcoverage.FilterRule classes.

filt = slcoverage.Filter;
rule = slcoverage.FilterRule(sel,'Edge case',slcoverage.FilterMode.Justify);

Add the rule to the filter using the addRule method. Then save the new filter file with the save
method.

filt.addRule(rule);
filt.save('blfilter');

To apply the filter to the coverage data, set the filter property of the cvdata object to the name of
the filter file. Use decisioninfo on the filtered coverage data to see that there is now 100%
decision coverage because the justified objectives are counted as satisfied.

covData.filter = 'blfilter';
newCov = decisioninfo(covData,...
 'slvnvdemo_ratelim_harness/Adjustable Rate Limiter')
percentNewCov = 100 * (newCov(1)/newCov(2))

newCov =

 6 6

percentNewCov =

 Analyze Coverage Data Using A Script

8-5

 100

See Also
cvdata | decisioninfo | slcoverage.Filter | slcoverage.FilterRule |
slcoverage.BlockSelector | slcoverage.MetricSelector | slcoverage.Selector

More About
• “Automating Model Coverage Tasks” on page 8-2
• “Perform Operations on Coverage Data” on page 8-24

8 Automating Model Coverage Tasks

8-6

Command Line Verification Tutorial

This example creates three test cases for an adjustable rate limiter and analyzes the resulting model
coverage using the command-line API of the Model Coverage tool.

Simulink® Model for the Adjustable Rate Limiter

The Simulink® subsystem Adjustable Rate Limiter is a rate limiter in the model
'slvnvdemo_ratelim_harness'. It uses three switch blocks to control when the output should be limited
and the type of limit to apply.

Inputs are produced with the From Workspace blocks 'gain', 'rising limit', and 'falling limit', which
generate piecewise linear signals. The values of the inputs are specified with six variables defined in
the MATLAB® workspace: t_gain, u_gain, t_pos, u_pos, t_neg, and u_neg.

Open the model and the Adjustable Rate Limiter subsystem.

modelName = 'slvnvdemo_ratelim_harness';
open_system(modelName);
open_system([modelName,'/Adjustable Rate Limiter']);

 Command Line Verification Tutorial

8-7

Creating the First Test Case

The first test case verifies that the output matches the input when the input values do not change
rapidly. It uses a sine wave as the time varying signal and constants for rising and falling limits.

t_gain = (0:0.02:2.0)';
u_gain = sin(2*pi*t_gain);

Calculate the minimum and maximum change of the time varying input using the MATLAB diff
function.

max_change = max(diff(u_gain))
min_change = min(diff(u_gain))

max_change =

 0.1253

min_change =

 -0.1253

Because the signal changes are much less than 1 and much greater than -1, set the rate limits to 1
and -1. The variables are all stored in the MAT file 'within_lim.mat', which is loaded before simulation.

t_pos = [0;2];
u_pos = [1;1];
t_neg = [0;2];
u_neg = [-1;-1];

save('within_lim.mat','t_gain','u_gain','t_pos','u_pos','t_neg','u_neg');

Additional Test Cases

The second test case complements the first case with a rising gain that exceeds the rate limit. After a
second it increases the rate limit so that the gain changes are below that limit.

t_gain = [0;2];
u_gain = [0;4];
t_pos = [0;1;1;2];
u_pos = [1;1;5;5]*0.02;
t_neg = [0;2];
u_neg = [0;0];

save('rising_gain.mat','t_gain','u_gain','t_pos','u_pos','t_neg','u_neg');

The third test case is a mirror image of the second, with the rising gain replaced by a falling gain.

t_gain = [0;2];
u_gain = [-0.02;-4.02];
t_pos = [0;2];
u_pos = [0;0];
t_neg = [0;1;1;2];
u_neg = [-1;-1;-5;-5]*0.02;

save('falling_gain.mat','t_gain','u_gain','t_pos','u_pos','t_neg','u_neg');

8 Automating Model Coverage Tasks

8-8

Defining Coverage Tests

The test cases are organized and executed using sim.

In this example, a simulation input object is used to set the coverage configuration.

covSet = Simulink.SimulationInput(modelName);
covSet = setModelParameter(covSet,'CovEnable','on');
covSet = setModelParameter(covSet,'CovMetricStructuralLevel','Decision');
covSet = setModelParameter(covSet,'CovSaveSingleToWorkspaceVar','on');
covSet = setModelParameter(covSet,'CovScope','Subsystem');
covSet = setModelParameter(covSet,'CovPath','/Adjustable Rate Limiter');
covSet = setModelParameter(covSet,'StartTime','0.0');
covSet = setModelParameter(covSet,'StopTime','2.0');

Executing Coverage Tests

Load the data for the first test case, set the coverage variable name, and execute the model using
sim.

load within_lim.mat
covSet = setModelParameter(covSet,'CovSaveName','dataObj1');
simOut1 = sim(covSet);
dataObj1

dataObj1 = ... cvdata
 version: (R2023a)
 id: 1722
 type: TEST_DATA
 test: cvtest object
 rootID: 1724
 checksum: [1x1 struct]
 modelinfo: [1x1 struct]
 startTime: 03-Mar-2023 13:34:51
 stopTime: 03-Mar-2023 13:34:51
 intervalStartTime: 0
 intervalStopTime: 0
simulationStartTime: 0
 simulationStopTime: 2
 filter:
 simMode: Normal

Verify the first test case by checking that the output matches the input.

subplot(211)
plot(simOut1.tout,simOut1.yout(:,1),simOut1.tout,simOut1.yout(:,4))
xlabel('Time (sec)'), ylabel('Value'),
title('Gain input and output');
subplot(212)
plot(simOut1.tout,simOut1.yout(:,1)-simOut1.yout(:,4))
xlabel('Time (sec)'),ylabel('Difference'),
title('Difference between the gain input and output');

 Command Line Verification Tutorial

8-9

Execute and plot results for the second test case in the same way.

Notice that once the limited output has diverged from the input it can only recover at the maximum
slew rate. This is why the plot has an unusual kink. Once the input and output match, the two change
together.

load rising_gain.mat
covSet = setModelParameter(covSet,'CovSaveName','dataObj2');
simOut2 = sim(covSet);
dataObj2

subplot(211)
plot(simOut2.tout,simOut2.yout(:,1),simOut2.tout,simOut2.yout(:,4))
xlabel('Time (sec)'), ylabel('Value'),
title('Gain input and output');
subplot(212)
plot(simOut2.tout,simOut2.yout(:,1)-simOut2.yout(:,4))
xlabel('Time (sec)'), ylabel('Difference'),
title('Difference between the gain input and output');

dataObj2 = ... cvdata
 version: (R2023a)
 id: 1838
 type: TEST_DATA
 test: cvtest object
 rootID: 1724

8 Automating Model Coverage Tasks

8-10

 checksum: [1x1 struct]
 modelinfo: [1x1 struct]
 startTime: 03-Mar-2023 13:34:55
 stopTime: 03-Mar-2023 13:34:55
 intervalStartTime: 0
 intervalStopTime: 0
simulationStartTime: 0
 simulationStopTime: 2
 filter:
 simMode: Normal

Execute and plot results for the third test case.

load falling_gain.mat
covSet = setModelParameter(covSet,'CovSaveName','dataObj3');
simOut3 = sim(covSet);
dataObj3

subplot(211)
plot(simOut3.tout,simOut3.yout(:,1),simOut3.tout,simOut3.yout(:,4))
xlabel('Time (sec)'), ylabel('Value'),
title('Gain input and output');
subplot(212)
plot(simOut3.tout,simOut3.yout(:,1)-simOut3.yout(:,4))
xlabel('Time (sec)'), ylabel('Difference'),
title('Difference between the gain input and output');

 Command Line Verification Tutorial

8-11

dataObj3 = ... cvdata
 version: (R2023a)
 id: 1960
 type: TEST_DATA
 test: cvtest object
 rootID: 1724
 checksum: [1x1 struct]
 modelinfo: [1x1 struct]
 startTime: 03-Mar-2023 13:34:56
 stopTime: 03-Mar-2023 13:34:56
 intervalStartTime: 0
 intervalStopTime: 0
simulationStartTime: 0
 simulationStopTime: 2
 filter:
 simMode: Normal

Generating a Coverage Report

Assuming that all the tests have passed, produce a combined report from all test cases to verify the
achievement of 100% coverage. Coverage percentages for each test are displayed under the heading
"Model Hierarchy." Although none of the tests individually achieved 100% coverage, in aggregate,
they achieve complete coverage.

cvhtml('combined_ratelim',dataObj1,dataObj2,dataObj3);

8 Automating Model Coverage Tasks

8-12

Saving Coverage Data

Save the collected coverage data in the file "ratelim_testdata.cvt" by using cvsave.

cvsave('ratelim_testdata',dataObj1,dataObj2,dataObj3);

Close the model and exit the coverage environment

close_system('slvnvdemo_ratelim_harness',0);
clear dataObj*

Loading Coverage Data

Restore saved coverage tests from the file "ratelim_testdata.cvt" after opening the model by using
cvload. The data and tests are retrieved in a cell array.

open_system('slvnvdemo_ratelim_harness');
[SavedTests,SavedData] = cvload('ratelim_testdata')

SavedTests =

 1x3 cell array

 {1x1 cvtest} {1x1 cvtest} {1x1 cvtest}

SavedData =

 1x3 cell array

 {1x1 cvdata} {1x1 cvdata} {1x1 cvdata}

Manipulating Coverage Data Objects

Manipulate cvdata objects using the overloaded operators: +, -, and *. The * operator is used to find
the intersection of two coverage data objects, which results in another cvdata object. For example,
the following command produces an HTML report of the common coverage from all three tests.

 Command Line Verification Tutorial

8-13

common = SavedData{1} * SavedData{2} * SavedData{3}
cvhtml('intersection',common)

common = ... cvdata
 version: (R2023a)
 id: 0
 type: DERIVED_DATA
 test: []
 rootID: 291
 checksum: [1x1 struct]
 modelinfo: [1x1 struct]
 startTime: 03-Mar-2023 13:34:51
 stopTime: 03-Mar-2023 13:34:56
 intervalStartTime: 0
 intervalStopTime: 0
 filter:
 simMode: Normal

Extracting Information from Coverage Data Objects

Retrieve decision coverage information from a block path or block handle by using decisioninfo.
The output is a vector with the achieved and total outcomes for a single model object, respectively.

cov = decisioninfo(SavedData{1} + SavedData{2} + SavedData{3}, ...
 'slvnvdemo_ratelim_harness/Adjustable Rate Limiter')

cov =

 6 6

Use the retrieved coverage information to access the percentage coverage.

percentCov = 100 * (cov(1)/cov(2))

percentCov =

 100

When two output arguments are used, decisioninfo returns a structure that captures the decisions
and outcomes within the Simulink block or Stateflow® object.

[blockCov,desc] = decisioninfo(common, ...
 'slvnvdemo_ratelim_harness/Adjustable Rate Limiter/Delta sign')
descDecision = desc.decision
outcome1 = desc.decision.outcome(1)
outcome2 = desc.decision.outcome(2)

blockCov =

 0 2

8 Automating Model Coverage Tasks

8-14

desc =

 struct with fields:

 isFiltered: 0
 justifiedCoverage: 0
 isJustified: 0
 filterRationale: ''
 decision: [1x1 struct]

descDecision =

 struct with fields:

 text: 'Switch trigger'
 filterRationale: ''
 isFiltered: 0
 isJustified: 0
 outcome: [1x2 struct]

outcome1 =

 struct with fields:

 text: 'false (out = in3)'
 executionCount: 0
 executedIn: []
 isFiltered: 0
 isJustified: 0
 filterRationale: ''

outcome2 =

 struct with fields:

 text: 'true (out = in1)'
 executionCount: 0
 executedIn: []
 isFiltered: 0
 isJustified: 0
 filterRationale: ''

 Command Line Verification Tutorial

8-15

Extracting Detailed Information from Coverage Data

This example shows how coverage utility commands can be used to extract information for an
individual subsystem, block, or Stateflow® object from cvdata objects.

Example Model

This example illustrates command line access of coverage data for a small model that contains
aspects of various supported coverage metrics.

Use the following commands to open the model 'slvnvdemo_cv_small_controller' and its subsystem
'Gain.'

open_system('slvnvdemo_cv_small_controller');
open_system('slvnvdemo_cv_small_controller/Gain');

Generate Coverage Data and an HTML Report

Simulate the model using sim. Use a Simulink.SimulationInput object to capture coverage
settings and use it as an input to sim. After the simulation, coverage data will be stored in a cvdata
object.

simIn = Simulink.SimulationInput('slvnvdemo_cv_small_controller');
simIn = simIn.setModelParameter('CovEnable','on');
simIn = simIn.setModelParameter('CovMetricStructuralLevel','MCDC');
simIn = simIn.setModelParameter('CovSaveSingleToWorkspaceVar','on');
simIn = simIn.setModelParameter('CovSaveName','covData');
simIn = simIn.setModelParameter('CovScope','EntireSystem');
simIn = simIn.setModelParameter('CovMetricLookupTable','on');
simIn = simIn.setModelParameter('CovMetricSignalRange','on');
simOut = sim(simIn);

Process the coverage data returned from a cvsim command with the report generation command
cvhtml. The resulting report is a convenient representation of model coverage for the entire model.

cvhtml('tempfile.html',covData);

8 Automating Model Coverage Tasks

8-16

The coverage data is also available in the simulation output object.

simOut

simOut =

 Simulink.SimulationOutput:
 covData: [1x1 cvdata]
 tout: [59x1 double]
 yout: [59x1 double]

 SimulationMetadata: [1x1 Simulink.SimulationMetadata]
 ErrorMessage: [0x0 char]

Extract Decision Coverage Information

Use the decisioninfo command to extract decision coverage information for individual Simulink
blocks or Stateflow objects.

The following command extracts a coverage array for the entire model. The first element is the
number of coverage objective outcomes satisfied for the model; the second element is the total
number of coverage objective outcomes for the model.

cov = decisioninfo(covData,'slvnvdemo_cv_small_controller')
percent = 100*cov(1)/cov(2)

cov =

 4 6

percent =

 66.6667

Retrieve coverage information for the 'Saturation' block using the full path to that block. Provide a
second return argument for textual descriptions of the coverage objective outcomes within that block.

[blkCov, description] = decisioninfo(covData,'slvnvdemo_cv_small_controller/Saturation')

decision1 = description.decision(1).text
out_1a = description.decision(1).outcome(1).text
count_1a = description.decision(1).outcome(1).executionCount
out_1b = description.decision(1).outcome(2).text
count_1b = description.decision(1).outcome(2).executionCount

blkCov =

 3 4

description =

 Extracting Detailed Information from Coverage Data

8-17

 struct with fields:

 isFiltered: 0
 justifiedCoverage: 0
 isJustified: 0
 filterRationale: ''
 decision: [1x2 struct]

decision1 =

 'U >= LL'

out_1a =

 'false'

count_1a =

 0

out_1b =

 'true'

count_1b =

 7

Quantitative coverage information is available for every outcome in the hierarchy that contains or has
coverage objective outcomes. Textual descriptions are generated only for objects that have coverage
objective outcomes themselves. For example, invoke decisioninfo for the virtual subsystem Gain,
and the description return value is empty.

[blkCov, description] = decisioninfo(covData,'slvnvdemo_cv_small_controller/Gain')

blkCov =

 1 2

description =

 struct with fields:

 isFiltered: 0
 justifiedCoverage: 0
 isJustified: 0
 filterRationale: ''

8 Automating Model Coverage Tasks

8-18

In some cases an object has internal coverage objectives but also contains descendants with
additional coverage objectives. Coverage information normally includes all the descendants unless a
third argument for ignoring descendants is set to 1.

subsysOnlycov = decisioninfo(covData,'slvnvdemo_cv_small_controller/Gain',1)

subsysOnlycov =

 []

The decisioninfo command also works with block handles, Stateflow IDs, and Stateflow API
objects.

blkHandle = get_param('slvnvdemo_cv_small_controller/Saturation','Handle')
blkCov = decisioninfo(covData,blkHandle)

blkHandle =

 34.0044

blkCov =

 3 4

If an object has no decision coverage, the command returns empty outputs.

missingBlkCov = decisioninfo(covData,'slvnvdemo_cv_small_controller/Sine1')

missingBlkCov =

 []

Extract Condition Coverage Information

Condition coverage indicates if the logical inputs to Boolean expressions have been evaluated to both
true and false. In Simulink, conditions are the inputs to logical operations.

The conditioninfo command for extracting condition coverage information is very similar to the
decisioninfo command. It normally returns information about an object and all its descendants,
but can take a third argument that indicates if descendants should be ignored. It can also return a
second output containing descriptions of each condition.

cov = conditioninfo(covData,'slvnvdemo_cv_small_controller/Gain/Logic')
[cov, desc] = conditioninfo(covData,'slvnvdemo_cv_small_controller/Gain/Logic');
desc.condition(1)
desc.condition(2)

cov =

 2 4

 Extracting Detailed Information from Coverage Data

8-19

ans =

 struct with fields:

 isFiltered: 0
 isJustified: 0
 filterRationale: ''
 text: 'port1'
 trueCnts: 59
 falseCnts: 0
 trueOutcomeFilter: [1x1 struct]
 falseOutcomeFilter: [1x1 struct]
 trueExecutedIn: []
 falseExecutedIn: []

ans =

 struct with fields:

 isFiltered: 0
 isJustified: 0
 filterRationale: ''
 text: 'port2'
 trueCnts: 0
 falseCnts: 59
 trueOutcomeFilter: [1x1 struct]
 falseOutcomeFilter: [1x1 struct]
 trueExecutedIn: []
 falseExecutedIn: []

Extract Modified Condition/Decision Coverage Information

Modified Condition/Decision Coverage (MCDC) is satisfied for a condition within a Boolean
expression if there are two evaluations of the expression, representing an independence pair, which
illustrate that the value of the condition independently affects the outcome of the entire expression.
That is to say, for these evaluations, toggling the value of the condition would cause the expression
outcome to toggle as well.

In this example, the logical AND block is analyzed for MCDC and this information can be extracted
using the mcdcinfo command. This command uses the same syntax as conditioninfo and
decisioninfo commands.

[cov, desc] = mcdcinfo(covData,'slvnvdemo_cv_small_controller/Gain/Logic')
desc.condition(1)
desc.condition(2)

cov =

 0 2

desc =

8 Automating Model Coverage Tasks

8-20

 struct with fields:

 text: 'Output'
 condition: [1x2 struct]
 isFiltered: 0
 filterRationale: ''
 justifiedCoverage: 0

ans =

 struct with fields:

 text: 'port1'
 achieved: 0
 trueRslt: '(TT)'
 falseRslt: '(FT)'
 isFiltered: 0
 isJustified: 0
 filterRationale: ''
 trueExecutedIn: []
 falseExecutedIn: []

ans =

 struct with fields:

 text: 'port2'
 achieved: 0
 trueRslt: '(TT)'
 falseRslt: 'TF'
 isFiltered: 0
 isJustified: 0
 filterRationale: ''
 trueExecutedIn: []
 falseExecutedIn: []

Extract Lookup Table Coverage Information

Lookup table coverage records the frequency that lookup occurs for each interpolation interval. Valid
intervals for coverage purposes also include values less than the smallest breakpoint and values
greater than the largest breakpoint. For consistency with the other commands, this information is
returned as a pair of counts with the number of intervals that executed and the total number of
intervals.

A second output argument causes tableinfo to return the execution counts for all interpolation
intervals. If the table has M-by-N output values, execution counts are returned in an M+1-by-N+1
matrix.

A third output argument causes tableinfo to return the counts where the input was exactly equal
to the breakpoint. This is returned in a cell array of vectors, one for each dimension in the table.

[cov,execCnts,brkEq] = tableinfo(covData, 'slvnvdemo_cv_small_controller/Gain/Gain Table')

cov =

 Extracting Detailed Information from Coverage Data

8-21

 23 121

execCnts =

 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 2 12 14 10 2 0 0 0
 0 0 4 12 0 0 0 12 0 0 0
 0 0 22 0 0 0 0 0 12 0 0
 0 0 21 0 0 0 0 0 59 0 0
 0 0 21 0 0 0 0 0 29 0 0
 0 0 7 28 0 0 0 28 6 0 0
 0 0 0 4 22 18 23 5 0 0 0
 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0

brkEq =

 1x2 cell array

 {10x1 double} {10x1 double}

Extract Signal Range Information

The signal range metric records the smallest and largest value of Simulink block outputs and
Stateflow data objects. The sigrangeinfo command returns two return arguments for the minimum
and maximum values, respectively.

The sigrangeinfo command works only for leaf blocks that perform a computation; otherwise the
command returns empty arguments.

[sigMin, sigMax] = sigrangeinfo(covData,'slvnvdemo_cv_small_controller/Gain/Gain Table') % Leaf
[sigMin, sigMax] = sigrangeinfo(covData,'slvnvdemo_cv_small_controller/Gain') % Nonleaf

sigMin =

 3.3656

sigMax =

 7.6120

sigMin =

 []

sigMax =

8 Automating Model Coverage Tasks

8-22

 []

 Extracting Detailed Information from Coverage Data

8-23

Perform Operations on Coverage Data

This example shows how to use the overloaded operators +, *, and - to combine coverage results into
a union, intersection, or set difference of results.

Open Model

Open the slvnvdemo_cv_mutual_exclusion model. The model contains a Constant block
connected to the enable port of two subsystems. One of the subsystems has a NOT block placed before
the enable port, which means only one of the subsystems can be enabled at a time.

modelName = "slvnvdemo_cv_mutual_exclusion";
open_system(modelName)

Create a Simulink.SimulationInput object and then use setModelParameter to set some
coverage parameters.

simIn = Simulink.SimulationInput(modelName);

Enable coverage analyze for the model by setting the CovEnable parameter to on.

simIn = setModelParameter(simIn,"CovEnable","on");

Set the structural coverage level to Decision.

simIn = setModelParameter(simIn,"CovMetricStructuralLevel","Decision");

Display the coverage data in MATLAB® instead of the file location by setting CovSaveOutputData
to off. This also prevents Simulink® Coverage® from automatically saving the coverage data to a
file after the simulation.

simIn = setModelParameter(simIn,"CovSaveOutputData","off");

Simulate the model by using simIn as the input to sim. The SimulationOutput object contains the
coverage data as a property whose name is equal to the value of the CovSaveName configuration
parameter. The default value is covdata.

simOut1 = sim(simIn);
data1 = simOut1.covdata

8 Automating Model Coverage Tasks

8-24

data1 = ... cvdata
 version: (R2023a)
 id: 1901
 type: TEST_DATA
 test: cvtest object
 rootID: 1903
 checksum: [1x1 struct]
 modelinfo: [1x1 struct]
 startTime: 03-Mar-2023 13:40:28
 stopTime: 03-Mar-2023 13:40:28
 intervalStartTime: 0
 intervalStopTime: 0
simulationStartTime: 0
 simulationStopTime: 10
 filter:
 simMode: Normal

Change which subsystem is enabled by using the setBlockParameter method to change the value
of the Constant block from 0 to 1, and then simulate the model again.

simIn = setBlockParameter(simIn,modelName+"/Constant","value","1");
simOut2 = sim(simIn);
data2 = simOut2.covdata

data2 = ... cvdata
 version: (R2023a)
 id: 1955
 type: TEST_DATA
 test: cvtest object
 rootID: 1903
 checksum: [1x1 struct]
 modelinfo: [1x1 struct]
 startTime: 03-Mar-2023 13:40:28
 stopTime: 03-Mar-2023 13:40:28
 intervalStartTime: 0
 intervalStopTime: 0
simulationStartTime: 0
 simulationStopTime: 10
 filter:
 simMode: Normal

Use the decisioninfo function to extract the decision coverage from each simulation and
determine the percentage of decision outcomes satisfied.

cov1 = decisioninfo(data1,modelName);
percent1 = 100*(cov1(1)/cov1(2))

cov2 = decisioninfo(data2,modelName);
percent2 = 100*(cov2(1)/cov2(2))

percent1 =

 50

 Perform Operations on Coverage Data

8-25

percent2 =

 50

Both simulations have 50% coverage. To check if the two simulations cover the same 50% of decision
outcomes, look at the union and intersection of the two objects.

Find the Union of Coverage

Use the + operator to derive a third cvdata object that represents the union of data1 and data2
cvdata objects. The union of two or more cvdata objects is also referred to as cumulative coverage
or aggregated coverage.

When you create cvdata objects by combining other simulation results, the type property of the
new object is DERIVED_DATA.

dataUnion = data1 + data2

dataUnion = ... cvdata
 version: (R2023a)
 id: 0
 type: DERIVED_DATA
 test: []
 rootID: 1903
 checksum: [1x1 struct]
 modelinfo: [1x1 struct]
 startTime: 03-Mar-2023 13:40:28
 stopTime: 03-Mar-2023 13:40:28
 intervalStartTime: 0
 intervalStopTime: 0
 filter:
 simMode: Normal

Extract the decision coverage results and determine the percentage of decision outcomes satisfied by
calling the decisioninfo function on dataUnion.

covU = decisioninfo(dataUnion,modelName);
percentU = 100*(covU(1)/covU(2))

percentU =

 100

The union of the two simulations reports that 100% decision outcomes are satisfied. This result
indicates that there is no overlap in the coverage between the two simulations and that all decision
outcomes are satisfied.

8 Automating Model Coverage Tasks

8-26

Find the Intersection of Coverage

Confirm that the coverage does not overlap between the two simulations by intersecting data1 and
data2 with the * operator. The intersection returns only the coverage outcomes that are satisfied in
both cvdata objects.

dataIntersection = data1 * data2

covI = decisioninfo(dataIntersection,modelName);
percentI = 100*(covI(1)/covI(2))

dataIntersection = ... cvdata
 version: (R2023a)
 id: 0
 type: DERIVED_DATA
 test: []
 rootID: 1903
 checksum: [1x1 struct]
 modelinfo: [1x1 struct]
 startTime: 03-Mar-2023 13:40:28
 stopTime: 03-Mar-2023 13:40:28
 intervalStartTime: 0
 intervalStopTime: 0
 filter:
 simMode: Normal

percentI =

 0

There is 0% decision coverage in the intersection because there is no overlap in coverage between
the two simulations.

Compute the Coverage Difference

Use the - operator to create a cvdata object that represents the set difference between the left and
right operands. The result of the operation contains the coverage outcomes that are satisfied in the
left operand but not satisfied in the right operand. Use this operation to determine how much
additional coverage is attributed to a particular simulation.

In this example, the difference between the union of the first and second simulation coverage and the
first simulation coverage indicates how much additional coverage the second simulation provided.
Because none of the decision coverage outcomes overlapped, the new decision coverage from the
second simulation is 50%.

newCov2 = dataUnion - data1

covN = decisioninfo(newCov2,'slvnvdemo_cv_mutual_exclusion');
percentN = 100*(covN(1)/covN(2))

newCov2 = ... cvdata
 version: (R2023a)
 id: 0

 Perform Operations on Coverage Data

8-27

 type: DERIVED_DATA
 test: []
 rootID: 1903
 checksum: [1x1 struct]
 modelinfo: [1x1 struct]
 startTime: 03-Mar-2023 13:40:28
 stopTime: 03-Mar-2023 13:40:28
 intervalStartTime: 0
 intervalStopTime: 0
 filter:
 simMode: Normal

percentN =

 50

Use Derived Coverage Data Objects

You can use derived cvdata objects in all reporting and analysis functions and as inputs to
subsequent operations. For example, generate a coverage report from the derived
dataIntersection object and create a new cvdata union.

cvhtml('intersect_cov', dataIntersection);

newUnion = dataUnion + dataIntersection

newUnion = ... cvdata
 version: (R2023a)
 id: 0
 type: DERIVED_DATA
 test: []
 rootID: 1903
 checksum: [1x1 struct]
 modelinfo: [1x1 struct]
 startTime: 03-Mar-2023 13:40:28
 stopTime: 03-Mar-2023 13:40:28
 intervalStartTime: 0
 intervalStopTime: 0
 filter:
 simMode: Normal

8 Automating Model Coverage Tasks

8-28

See Also
cvdata | Simulink.SimulationInput | sim

 Perform Operations on Coverage Data

8-29

Related Examples
• “Command Line Verification Tutorial” on page 8-7
• “Extracting Detailed Information from Coverage Data” on page 8-16
• “Analyze Coverage Data Using A Script” on page 8-4

8 Automating Model Coverage Tasks

8-30

Record Coverage in Parallel Simulations by Using Parsim

This example shows how to record coverage in multiple parallel Simulink® simulations
corresponding to different test cases by using SimulationInput objects and the parsim command. If
Parallel Computing Toolbox is installed on your system, the parsim command runs simulations in
parallel. Otherwise, the simulations are run in serial.

Model Overview

The slvnvdemo_powerwindow_parsim model contains a power window controller and a low-order
plant model. The component slvnvdemo_powerwindow_parsim/
power_window_control_system/control is a Model block that references the model
slvnvdemo_powerwindow_controller, which implements the controller with a Stateflow® chart.

mdl = 'slvnvdemo_powerwindow_parsim';
isModelOpen = bdIsLoaded(mdl);
open_system(mdl);

Set Up Data for Multiple Simulations

Determine the number of test cases in the Signal Editor block by using the NumberOfScenarios
parameter. The number of test cases determines the number of iterations to run.

 Record Coverage in Parallel Simulations by Using Parsim

8-31

sigEditBlk = [mdl '/Input'];
numCases = str2double(get_param(sigEditBlk,'NumberOfScenarios'));

Create an array of Simulink.SimulationInput objects to define the set of simulations to run.
Each SimulationInput object corresponds to one simulation and is stored in array simIn. For each
simulation, set these parameters:

• ActiveScenario to indicate which scenario of the Signal Editor block to execute
• CovEnable to turn on coverage analysis
• CovSaveSingleToWokspaceVar to save the coverage results to a workspace variable
• CovSaveName to specify the name of the variable.

for idx = numCases:-1:1
 simIn(idx) = Simulink.SimulationInput(mdl);
 simIn(idx) = setBlockParameter(simIn(idx), sigEditBlk, 'ActiveScenario', idx);
 simIn(idx) = setModelParameter(simIn(idx), 'CovEnable', 'on');
 simIn(idx) = setModelParameter(simIn(idx), 'CovSaveSingleToWorkspaceVar', 'on');
 simIn(idx) = setModelParameter(simIn(idx), 'CovSaveName', 'covdata');
end

Run Simulations in Parallel by Using Parsim

Use the parsim function to execute the simulations in parallel. Pass the array of SimulationInput
objects, simIn, into the parsim function as the first argument. Set the ShowProgress option to on
to display the progress of the simulations in the MATLAB Command Window. The output from the
parsim command is simOut, an array of Simulink.SimulationOutput objects.

simOut = parsim(simIn, 'ShowProgress', 'on');

[03-Mar-2023 13:40:36] Checking for availability of parallel pool...
Starting parallel pool (parpool) using the 'Processes' profile ...
Connected to parallel pool with 20 workers.
[03-Mar-2023 13:42:33] Starting Simulink on parallel workers...
[03-Mar-2023 13:42:48] Configuring simulation cache folder on parallel workers...
[03-Mar-2023 13:42:48] Loading model on parallel workers...
[03-Mar-2023 13:43:01] Running simulations...
[03-Mar-2023 13:44:12] Completed 1 of 2 simulation runs
[03-Mar-2023 13:44:12] Completed 2 of 2 simulation runs
[03-Mar-2023 13:44:12] Cleaning up parallel workers...

Each Simulink.SimulationInput object contains logged coverage results stored as
cv.cvdatagroup objects. These coverage results are stored in a field named covdata, as
previously specified by the CovSaveName parameter. Using parsim to run multiple simulations
means that errors are captured so that subsequent simulations can continue to run. Any errors are
recorded in the ErrorMessage property of the SimulationOutput object.

covdata references a file containing the coverage results. The coverage data from the referenced
file is automatically loaded into memory when covdata is used by a coverage function.

simOut(1).covdata

ans = ... cvdata
 file: C:\TEMP\Bdoc23a_2213998_3568\ib570499\38\tpefa5766f\slcoverage-ex16619798\slcov_output\slvnvdemo_powerwindow_parsim\slvnvdemo_powerwindow_parsim_cvdata_1.cvt
 date: 03-Mar-2023 13:44:11

8 Automating Model Coverage Tasks

8-32

Compute Cumulative Coverage

Obtain the coverage data from each element of simOut and cumulate the results.

coverageData = simOut(1).covdata;
for i = 2 : numCases
 coverageData = coverageData + simOut(i).covdata;
end

View the cumulative coverage results on the model by using coverage highlighting.

cvmodelview(coverageData);
open_system('slvnvdemo_powerwindow_parsim/power_window_control_system');

Generate a cumulative coverage report.

cvhtml('cummulative_cov_report.html', coverageData);

 Record Coverage in Parallel Simulations by Using Parsim

8-33

Filter Coverage Results Using a Script

This example shows how to programmatically filter objects and outcomes from coverage results.

Open the Model and Enable Coverage Analysis

First, load the model into memory.

modelName = 'slvnvdemo_covfilt';
load_system(modelName);

Configure the coverage settings for the model by using a Simulink.SimulationInput object.

simIn = Simulink.SimulationInput(modelName);
simIn = simIn.setModelParameter('CovEnable','on');
simIn = simIn.setModelParameter('CovMetricStructuralLevel','MCDC');
simIn = simIn.setModelParameter('StopTime','20');
simIn = simIn.setModelParameter('CovSaveSingleToWorkspaceVar','on');
simIn = simIn.setModelParameter('CovSaveName','covData');

For a list of coverage parameters, see “Coverage Settings”.

Simulate the model using the SimulationInput object as the input.

simOut = sim(simIn);

View Decision Coverage Results

View the coverage results before applying a filter. You can access the decision coverage results using
decisioninfo.

saturationInitial = decisioninfo(covData,'slvnvdemo_covfilt/Saturation');
percentSaturationCov = 100 * saturationInitial(1)/saturationInitial(2)

percentSaturationCov =

 50

The Saturation block has 50% decision coverage. If you do not intend for this block to be satisfied,
you can filter a missing objective outcome so that it is no longer reported as missing coverage. First,
you need a selector for the unsatisfied objective outcome that you want to filter.

Create a Selector

You can directly create a selector using the appropriate constructor. In this case, you would use
slcoverage.MetricSelector.

Because the objective being justified is a decision outcome, the first input to the metric selector
constructor is slcoverage.MetricSelectorType.DecisionOutcome. The second input is the
block handle. The last two are the index of the objective to justify and the index of the outcome of
that objective, respectively. Because the input > lower limit decision objective is the first
objective for the Saturation block, its objective index is 1. Because the false outcome of this
objective is the first outcome, its outcome index is also 1.

8 Automating Model Coverage Tasks

8-34

metricSel = slcoverage.MetricSelector(slcoverage.MetricSelectorType.DecisionOutcome,...
 'slvnvdemo_covfilt/Saturation',1,1)

metricSel =

 MetricSelector with properties:

 ObjectiveIndex: 1
 OutcomeIndex: 1
 Description: 'N/A'
 Type: DecisionOutcome
 Id: 'slvnvdemo_covfilt:5'
 ConstructorCode: 'slcoverage.MetricSelector(slcoverage.MetricSelectorType.DecisionOutcome, 'slvnvdemo_covfilt:5', 1, 1)'

You can also use slcoverage.Selector.allSelectors to see the available selectors for the
Saturation block.

saturationAllSels = slcoverage.Selector.allSelectors('slvnvdemo_covfilt/Saturation')

saturationAllSels =

 1x6 heterogeneous Selector (BlockSelector, MetricSelector) array with properties:

 Description
 Type
 Id
 ConstructorCode

You can also see the objective and outcome indices by using the allSelectors method. Use the
Description name-value pair to search for F.

falseSelectors = slcoverage.Selector.allSelectors('slvnvdemo_covfilt/Saturation',...
 'Description','F')

falseSelectors =

 1x2 MetricSelector array with properties:

 ObjectiveIndex
 OutcomeIndex
 Description
 Type
 Id
 ConstructorCode

There are two false case selectors in the Saturation block. The first selector is F outcome of
input > lower limit.

falseSel = falseSelectors(1)

falseSel =

 Filter Coverage Results Using a Script

8-35

 MetricSelector with properties:

 ObjectiveIndex: 1
 OutcomeIndex: 1
 Description: 'F outcome of input >= lower limit in Saturate block "Saturation"'
 Type: DecisionOutcome
 Id: 'slvnvdemo_covfilt:5'
 ConstructorCode: 'slcoverage.MetricSelector(slcoverage.MetricSelectorType.DecisionOutcome, 'slvnvdemo_covfilt:5', 1, 1)'

The falseSel selector is the same one we constructed manually using
slcoverage.MetricSelector. The objective and outcome indices are properties of the resulting
selector object.

Create a Justification Rule

Create a filter object by using slcoverage.Filter. You can set the filter file name and filter
description by using the methods setFilterName and setFilterDescription, respectively.

filt = slcoverage.Filter;
setFilterName(filt,'slcoverage_filter');
setFilterDescription(filt,'Example Filter');

Create a filter rule by using slcoverage.FilterRule. The first input to FilterRule is the
selector for the block or outcome you want to filter. This can be a selector you create, or one you
retrieve from allSelectors.

The second input is the rationale for filtering the outcome or block. This is specified as a character
array.

The third input is the filter mode you want to use. The two coverage filter modes are justify and
exclude. Use justify mode to filter individual coverage objective outcomes such as F outcome of
input > lower limit. Use exclude mode to filter entire model elements or blocks, which means
that the block and its descendants, if applicable, are ignored. In this example, use justify mode to
specify that you want to filter a specific outcome.

rule = slcoverage.FilterRule(metricSel,'rate > 0',slcoverage.FilterMode.Justify);

Add the rule to the filter using addRule.

filt.addRule(rule);

Save the filter to a filter file using the save method. Then apply the filter file to the cvdata object by
assigning the filter property to the new filter file.

filt.save('covfilter');
covData.filter = 'covfilter';

Re-generate the coverage results for the Saturation block using the filtered cvdata object.

filteredSaturation = decisioninfo(covData,'slvnvdemo_covfilt/Saturation');
percentSaturationFilt = 100 * filteredSaturation(1)/filteredSaturation(2)

percentSaturationFilt =

 75

8 Automating Model Coverage Tasks

8-36

Decision coverage for the Saturation block is now 75%.

Justify an MCDC Objective in a Stateflow® Chart

You can apply the same workflow to justify a specific Stateflow action. In this example, we want to
justify the tick MCDC objective that is part of the after(4, tick) transition.

First, get the Stateflow root object by using sfroot (Stateflow).

chartID = sfroot;

Get the 'after(4, tick)' transition ID by using the find (Stateflow) method. You can use find
to search for transitions by using the '-isa' flag with 'Stateflow.Transition'. You can further
specify the exact transition by using searching for the label string using additional inputs.

transitionID = chartID.find('-isa','Stateflow.Transition','LabelString','after(4, tick)');

Get the selector for the MCDC objective outcome that we want to filter by using allSelectors. Pass
the Simulink ID of the Stateflow transition as the first input. Because we want to justify a tick
outcome, search for "tick" in the description.

sfSelectors = slcoverage.Selector.allSelectors(transitionID,'Description','"tick"')

sfSelectors =

 1x3 MetricSelector array with properties:

 ObjectiveIndex
 OutcomeIndex
 Description
 Type
 Id
 ConstructorCode

allSelectors returns three possible selectors. The transition we want to filter is the third selector
returned.

sfSel = sfSelectors(3)

sfSel =

 MetricSelector with properties:

 ObjectiveIndex: 1
 OutcomeIndex: 1
 Description: 'Condition 1, "tick" outcome of Transition trigger expression in Transition "after(4, tick)" from "Clipped" to "Full"'
 Type: MCDCOutcome
 Id: 'slvnvdemo_covfilt:6:5'
 ConstructorCode: 'slcoverage.MetricSelector(slcoverage.MetricSelectorType.MCDCOutcome, 'slvnvdemo_covfilt:6:5', 1, 1)'

Create the rule, add it to the filter, and save it. The filter file is already applied to the cvdata object.

rule2 = slcoverage.FilterRule(sfSel,'tick never false');
filt.addRule(rule2);
filt.save('covfilter');

 Filter Coverage Results Using a Script

8-37

For more information about the stateflow programmatic API, see “Overview of the Stateflow API”
(Stateflow).

Exclude a Block Using Block Selector

You can filter a block using slcoverage.BlockSelector. In this case, we want to exclude the
Switchable config subsystem, so we use the SubsystemAllContent selector type and the
slcoverage.FilterMode.Exclude filter mode.

subsysSel = slcoverage.BlockSelector(...
 slcoverage.BlockSelectorType.SubsystemAllContent,...
 'slvnvdemo_covfilt/Switchable config');

Create the filter rule by passing the selector, rationale, and the exclude filter mode as inputs.

rule3 = slcoverage.FilterRule(subsysSel,...
 'Unused configuration',...
 slcoverage.FilterMode.Exclude);

Add the rule to the filter and save it.

filt.addRule(rule3);
filt.save('covfilter');

Finally, you can view the coverage report by using cvhtml. The Objects Filtered from Coverage
Analysis section shows a summary of the filtered model objects and the rationales. The '-sRT=0'
flag can be used to generate the coverage report but not open the report automatically.

cvhtml('filteredCovReport',covData,'-sRT=0');

See Also
slcoverage.BlockSelector | slcoverage.FilterRule | slcoverage.MetricSelector |
slcoverage.Selector | allSelectors | cvhtml | decisioninfo | cvdata

8 Automating Model Coverage Tasks

8-38

More About
• “Analyze Coverage Data Using A Script” on page 8-4
• “Creating and Using Coverage Filters” on page 7-11
• “Stateflow Programmatic Interface” (Stateflow)

 Filter Coverage Results Using a Script

8-39

Component Verification

• “Component Verification” on page 9-2
• “Fix Requirements-Based Testing Issues” on page 9-6

9

Component Verification

In this section...
“Simulink Coverage Tools for Component Verification” on page 9-2
“Workflow for Component Verification” on page 9-2
“Verify a Component Independently of the Container Model” on page 9-4
“Verify a Model Block in the Context of the Container Model” on page 9-4

Using component verification, you can test a design component in your model with one of these
approaches:

• System analysis. Within the context of the model that contains the component, you use systematic
simulation of closed-loop controllers to verify components within a control system model. You can
then test the control algorithms with your model.

• Component analysis. As standalone components, for a high level of confidence in the component
algorithm, verify the component in isolation from the rest of the system.

Verifying standalone components provides several advantages:

• You can use the analysis to focus on portions of the design that you cannot test because of the
physical limitations of the system being controlled.

• For open-loop simulations, you can test the plant model without feedback control.
• You can use this approach when the model is not yet available or when you need to simulate a

control system model in accelerated mode for performance reasons.

Simulink Coverage Tools for Component Verification
By isolating a component to verify and by using tools that the Simulink Coverage software provides,
you create test cases to expand the scope of the testing for large models. You can:

• Achieve 100% model coverage — If certain model components do not record 100% coverage, the
top-level model cannot achieve 100% coverage. By verifying these components individually, you
can create test cases that fully specify the component interface, allowing the component to record
100% coverage.

• Debug the component — To verify that each model component satisfies the specified design
requirements, you can create test cases that verify that specific components perform as they were
designed to perform.

• Test the robustness of the component — To verify that a component handles unexpected inputs
and calculations properly, you can create test cases that generate data. Then, test the error-
handling capabilities in the component.

Workflow for Component Verification
This graphic illustrates two approaches for component verification.

9 Component Verification

9-2

1 Choose your approach for component verification:

• For closed-loop simulations, verify a component within the context of its container model by
logging the signals to that component and storing them in a data file. If those signals do not
constitute a complete test suite, generate a harness model and add or modify the test cases in
the Signal Editor.

• For open-loop simulations, verify a component independently of the container model by
extracting the component from its container model and creating a harness model for the
extracted component. Add or modify test cases in the Signal Editor and log the signals to the
component in the harness model.

2 Prepare component for verification.
3 Create and log test cases. You can also merge the test case data into a single data file.

The data file contains the test case data for simulating the component. If you cannot achieve the
expected results with a certain set of test cases, add new test cases or modify existing test cases
in the data file. Merge the test cases into a single data file.

Continue adding or modifying test cases until you achieve a test suite that satisfies your analysis
goals.

4 Execute the test cases in software-in-the-loop or processor-in-the-loop mode.
5 After you have a complete test suite, you can:

• Simulate the model and execute the test cases to:

• Record coverage.
• Record output values to make sure that you get the expected results.

• Invoke the Code Generation Verification (CGV) API to execute the generated code for the
model that contains the component in simulation, software-in-the-loop (SIL), or processor-in-
the-loop (PIL) mode.

 Component Verification

9-3

Note To execute a model in different modes of execution, you use the CGV API to verify the
numerical equivalence of results. See “Programmatic Code Generation Verification”
(Embedded Coder).

Verify a Component Independently of the Container Model
Use component analysis to verify:

• Model blocks
• Atomic subsystems
• Stateflow atomic subcharts

1 Depending on the type of component, take one of the following actions:

• Model blocks — Open the referenced model.
• Atomic subsystems — Extract the contents of the subsystem into its own Simulink model.
• Atomic subcharts — Extract the contents of the Stateflow atomic subchart into its own

Simulink model.
2 Create a harness model for:

• The referenced model
• The extracted model that contains the contents of the atomic subsystem or atomic subchart

3 Add or modify test cases in the Signal Editor block of the harness model.
4 Log the input signals from the Signal Editor block to the test unit.
5 Repeat steps 3 and 4 until you are satisfied with the test suite.
6 Merge the test case data into a single file.
7 Depending on your goals, take one of these actions:

• Execute the test cases to:

• Record coverage.
• Record output values and make sure that they equal the expected values.

• Invoke the Code Generation Verification (CGV) API to execute the test cases in software-in-
the-loop (SIL) or processor-in-the-loop (PIL) mode on the generated code for the model that
contains the component.

If the test cases do not achieve the expected results, repeat steps 3 through 5.

Verify a Model Block in the Context of the Container Model
Use system analysis to:

• Verify a Model block in the context of the block’s container model.
• Analyze a closed-loop controller.

1 Log the input signals to the component by simulating the container model or analyze the model
by using the Simulink Design Verifier software.

2 If you want to add test cases to your test suite or modify existing test cases, create a harness
model with the logged signals.

9 Component Verification

9-4

3 Add or modify test cases in the Signal Editor block in the harness model.
4 Log the input signals from the Signal Editor to the test unit.
5 Repeat steps 3 and 4 until you are satisfied with the test suite.
6 Merge the test case data into a single file.
7 Depending on your goals, do one of the following:

• Execute the test cases to:

• Record coverage.
• Record output values and make sure that they equal the expected values.

• Invoke the Code Generation Verification (CGV) API to execute the test cases in software-in-
the-loop (SIL) or processor-in-the-loop (PIL) mode on the generated code for the model.

If the test cases do not achieve the expected results, repeat steps 3 through 5.

 Component Verification

9-5

Fix Requirements-Based Testing Issues

This example shows how to address common traceability issues in model requirements and tests by
using the Model Testing Dashboard. The dashboard analyzes the testing artifacts in a project and
reports metric data on quality and completeness measurements such as traceability and coverage,
which reflect guidelines in industry-recognized software development standards, such as ISO 26262
and DO-178C. The dashboard widgets summarize the data so that you can track your requirements-
based testing progress and fix the gaps that the dashboard highlights. You can click the widgets to
open tables with detailed information, where you can find and fix the testing artifacts that do not
meet the corresponding standards.

Collect Metrics for the Testing Artifacts in a Project

The dashboard displays testing data for a model and the artifacts that the unit traces to within a
project. For this example, open the project and collect metric data for the artifacts.

1 Open the project that contains the models and testing artifacts. For this example, in the
MATLAB® Command Window, enter dashboardCCProjectStart("incomplete").

2 Open the Dashboard window. To open the Model Testing Dashboard: on the Project tab, click
Model Testing Dashboard or enter modelTestingDashboard at the command line.

3 In the Project panel, the dashboard organizes unit models under the component models that
contain them in the model hierarchy. View the metric results for the unit cc_DriverSwRequest.
In the Project panel, click the name of the unit, cc_DriverSwRequest. When you initially select
cc_DriverSwRequest, the dashboard collects the metric results for uncollected metrics and
populates the widgets with the data for the unit.

9 Component Verification

9-6

Link a Requirement to its Implementation in a Model

The Artifacts panel shows artifacts such as requirements, tests, and test results that trace to the unit
selected in the Project panel.

In the Artifacts panel, the Trace Issues folder shows artifacts that do not trace to unit models in the
project. The Trace Issues folder contains subfolders for:

• Unexpected Implementation Links — Requirement links of Type Implements for a
requirement of Type Container or Type Informational. The dashboard does not expect these
links to be of Type Implements because container requirements and informational requirements
do not contribute to the Implementation and Verification status of the requirement set that they
are in. If a requirement is not meant to be implemented, you can change the link type. For
example, you can change a requirement of Type Informational to have a link of Type Related
to.

• Unresolved and Unsupported Links — Requirement links which are broken or not supported by
the dashboard. For example, if a model block implements a requirement, but you delete the model
block, the requirement link is now unresolved. The Model Testing Dashboard does not support
traceability analysis for some artifacts and some links. If you expect a link to trace to a unit and it
does not, see the troubleshooting solutions in “Resolve Missing Artifacts, Links, and Results”
(Simulink Check).

 Fix Requirements-Based Testing Issues

9-7

• Untraced Tests — Tests that execute on models or subsystems that are not on the project path.
• Untraced Results — Results that the dashboard can no longer trace to a test. For example, if a

test produces results, but you delete the test, the results can no longer be traced to the test.

Address Testing Traceability Issues

The widgets in the Test Analysis section of the Model Testing Dashboard show data about the unit
requirements, tests for the unit, and links between them. The widgets indicate if there are gaps in
testing and traceability for the implemented requirements.

Link Requirements and Tests

For the unit cc_DriverSwRequest, the Tests Linked to Requirements section shows that some of
the tests are missing links to requirements in the model.

To see detailed information about the missing links, in the Tests Linked to Requirements section,
click the widget Unlinked. The dashboard opens the Metric Details for the widget with a table of
metric values and hyperlinks to each related artifact. The table shows the tests that are implemented
in the unit, but do not have links to requirements. The table is filtered to show only tests that are
missing links to requirements.

The test Detect long decrement is missing linked requirements.

1 In the Artifact column of the table, point to Detect long decrement. The tooltip shows that the
test Detect long decrement is in the test suite Unit test for DriverSwRequest, in the test file
cc_DriverSwRequest_Tests.

2 Click Detect long decrement to open the test in the Test Manager. For this example, the test
needs to link to three requirements that already exist in the project. If there were not already
requirements, you could add a requirement by using the Requirements Editor.

3 Open the software requirements in the Requirements Editor. In the Artifacts panel of the
Dashboard window, expand the folder Functional Requirements > Implemented and double-
click the requirement file cc_SoftwareReqs.slreqx.

4 View the software requirements in the container with the summary Driver Switch Request
Handling. Expand cc_SoftwareReqs > Driver Switch Request Handling.

5 Select multiple software requirements. Hold down the Ctrl key as you click Output request
mode, Avoid repeating commands, and Long Increment/Decrement Switch recognition.
Keep these requirements selected in the Requirements Editor.

6 In the Test Manager, expand the Requirements section for the test Detect long decrement.
Click the arrow next to the Add button and select Link to Selected Requirement. The
traceability link indicates that the test Detect long decrement verifies the three
requirements Output request mode, Avoid repeating commands, and Long Increment/
Decrement Switch recognition.

9 Component Verification

9-8

7 The metric results in the dashboard reflect only the saved artifact files. To save the test suite
cc_DriverSwRequest_Tests.mldatx, in the Test Browser, right-click
cc_DriverSwRequest_Tests and click Save.

Refresh Metric Results in the Dashboard

The dashboard detects that the metric results are now stale and shows a warning banner at the top of
the dashboard.

1 Click the Collect button on the warning banner to re-collect the metric data so that the
dashboard reflects the traceability link between the test and requirements.

2 View the updated dashboard widgets by returning to the Model Testing results. At the top of the
dashboard, there is a breadcrumb trail from the Metric Details back to the Model Testing
results. Click the breadcrumb button for cc_DriverSwRequest to return to the Model Testing
results for the unit.

The Tests Linked to Requirements section shows that there are no unlinked tests. The
Requirements Linked to Tests section shows that there are 3 unlinked requirements. Typically,
before running the tests, you investigate and address these testing traceability issues by adding tests
and linking them to the requirements. For this example, leave the unlinked artifacts and continue to
the next step of running the tests.

Test the Model and Analyze Failures and Gaps

After you create and link unit tests that verify the requirements, run the tests to check that the
functionality of the model meets the requirements. To see a summary of the test results and coverage
measurements, use the widgets in the Simulation Test Result Analysis section of the dashboard.
The widgets help show testing failures and gaps. Use the metric results to analyze the underlying
artifacts and to address the issues.

Perform Unit Testing

Run the tests for the model by using the Test Manager. Save the test results in your project and
review them in the Model Testing Dashboard.

1 Open the unit tests for the model in the Test Manager. In the Model Testing Dashboard, in the
Artifacts panel, expand the folder Tests > Unit Tests and double-click the test file
cc_DriverSwRequest_Tests.mldatx.

2 In the Test Manager, click Run.
3 Select the results in the Results and Artifacts pane.
4 Save the test results as a file in the project. On the Tests tab, in the Results section, click

Export. Name the results file Results1.mldatx and save the file under the project root folder.

 Fix Requirements-Based Testing Issues

9-9

The Model Testing Dashboard detects the results and automatically updates the Artifacts panel to
include the new test results for the unit in the subfolder Test Results > Model.

The dashboard also detects that the metric results are now stale and shows a warning banner at the
top of the dashboard.

The Stale icon appears on the widgets in the Simulation Test Result Analysis section to
indicate that they are showing stale data that does not include the changes.

Click the Collect button on the warning banner to re-collect the metric data and to update the stale
widgets with data from the current artifacts.

Address Testing Failures and Gaps

For the unit cc_DriverSwRequest, the Model Test Status section of the dashboard indicates that
one test failed and one test was disabled during the latest test run.

1 To view the disabled test, in the dashboard, click the Disabled widget. The table shows the
disabled tests for the model.

2 Open the disabled test in the Test Manager. In the table, click the test artifact Detect long
decrement.

3 Enable the test. In the Test Browser, right-click the test and click Enabled.
4 Re-run the test. In the Test Browser, right-click the test and click Run and save the test suite

file.
5 View the updated number of disabled tests. In the dashboard, click the Collect button on the

warning banner. Note that there are now zero disabled tests reported in the Model Test Status
section of the dashboard.

6 View the failed test in the dashboard. Click the breadcrumb button for cc_DriverSwRequest to
return to the Model Testing results and click the Failed widget.

7 Open the failed test in the Test Manager. In the table, click the test artifact Detect set.
8 Examine the test failure in the Test Manager. You can determine if you need to update the test or

the model by using the test results and links to the model. For this example, instead of fixing the

9 Component Verification

9-10

failure, use the breadcrumbs in the dashboard to return to the Model Testing results and
continue on to examine test coverage.

Check if the tests that you ran fully exercised the model design by using the coverage metrics. For
this example, the Model Coverage section of the dashboard indicates that some conditions in the
model were not covered. Place your cursor over the Decision bar in the widget to see what percent
of condition coverage was achieved.

1 View details about the decision coverage by clicking one of the Decision bars. For this example,
click the Decision bar for Achieved coverage.

2 In the table, expand the model artifact. The table shows the test results for the model and the
results files that contains them. For this example, click on the hyperlink to the source file
Results1.mldatx to open the results file in the Test Manager.

3 To see detailed coverage results, use the Test Manager to open the model in the Coverage
perspective. In the Test Manager, in the Aggregated Coverage Results section, in the
Analyzed Model column, click cc_DriverSwRequest.

4 Coverage highlighting on the model shows the points that were not covered by the tests. For this
example, do not fix the missing coverage. For a point that is not covered in your project, you can
add a test to cover it. You can find the requirement that is implemented by the model element or,
if there is none, add a requirement for it. Then you can link the new test to the requirement. If
the point should not be covered, you can justify the missing coverage by using a filter.

Once you have updated the unit tests to address failures and gaps in your project, run the tests and
save the results. Then examine the results by collecting the metrics in the dashboard.

Iterative Requirements-Based Testing with the Model Testing Dashboard

In a project with many artifacts and traceability connections, you can monitor the status of the design
and testing artifacts whenever there is a change to a file in the project. After you change an artifact,
use the dashboard to check if there are downstream testing impacts by updating the tracing data and
metric results. Use the Metric Details tables to find and fix the affected artifacts. Track your
progress by updating the dashboard widgets until they show that the model testing quality meets the
standards for the project.

 Fix Requirements-Based Testing Issues

9-11

Verification and Validation

• “Test Model Against Requirements and Report Results” on page 10-2
• “Analyze Models for Standards Compliance and Design Errors” on page 10-7
• “Perform Functional Testing and Analyze Test Coverage” on page 10-9
• “Analyze Code and Test Software-in-the-Loop” on page 10-12

10

Test Model Against Requirements and Report Results

Requirements – Test Traceability Overview
Traceability between requirements and test cases helps you interpret test results and see the extent
to which your requirements are verified. You can link a requirement to elements that help verify it,
such as test cases in the Test Manager, verify statements in a Test Sequence block, or Model
Verification blocks in a model. When you run tests, a pass/fail summary appears in your requirements
set.

This example demonstrates a common requirements-based testing workflow for a cruise control
model. You start with a requirements set, a model, and a test case. You add traceability between the
tests and the safety requirements. You run the test, summarize the verification status, and report the
results.

In this example, you conduct a simple test of two requirements in the set:

• That the cruise control system transitions to disengaged from engaged when a braking event has
occurred

• That the cruise control system transitions to disengaged from engaged when the current vehicle
speed is outside the range of 20 mph to 90 mph.

Display the Requirements
1 Open the example project.

openExample("shared_vnv/CruiseControlVerificationProjectExample");
pr = openProject("SimulinkVerificationCruise");

2 In the models folder, open the simulinkCruiseAddReqExample model.
3 Display the requirements. Click the icon in the lower-right corner of the model canvas, and

select Requirements. The requirements appear below the model canvas.
4 Display the verification and implementation status. Right-click a requirement and select

Verification Status and Implementation Status.

10 Verification and Validation

10-2

5 In the Project window, open the Simulink Test file slReqTests.mldatx from the tests folder.
The test file opens in the Test Manager.

Link Requirements to Tests
Link the requirements to the test case.

1 In the Project window, open the Simulink Test file slReqTests.mldatx from the tests folder.
The test file opens in the Test Manager. Explore the test suite and select Safety Tests.

Return to the model. Right-click on requirement S 3.1 and select Link from Selected Test
Case.

A link to the Safety Tests test case is added to Verified by. The yellow bars in the Verified
column indicate that the requirements are not verified.

 Test Model Against Requirements and Report Results

10-3

2 Also add a link for item S 3.4.

Run the Test
The test case uses a test harness SafetyTest_Harness1. In the test harness, a test sequence sets
the input conditions and checks the model behavior:

• The BrakeTest sequence engages the cruise control, then applies the brake. It includes the
verify statement

verify(engaged == false,...
 'verify:brake',...
 'system must disengage when brake applied')

• The LimitTest sequence engages the cruise control, then ramps up the vehicle speed until it
exceeds the upper limit. It includes the verify statement.

verify(engaged == false,...
 'verify:limit',...
 'system must disengage when limit exceeded')

1 Return to the Test Manager. To run the test case, click Run.
2 When the test finishes, review the results. The Test Manager shows that both assessments pass

and the plot provides the detailed results of each verify statement.

10 Verification and Validation

10-4

3 Return to the model and refresh the Requirements. The green bar in the Verified column
indicates that the requirement has been successfully verified.

Report the Results
1 Create a report using a custom Microsoft Word template.

a From the Test Manager results, right-click the test case name. Select Create Report.
b In the Create Test Result Report dialog box, set the options:

• Title — SafetyTest
• Results for — All Tests
• File Format — DOCX
• For the other options, keep the default selections.

c Enter a file name and select a location for the report.
d For the Template File, select the ReportTemplate.dotx file in the documents project

folder.
e Click Create.

 Test Model Against Requirements and Report Results

10-5

2 Review the report.

a The Test Case Requirements section specifies the associated requirements
b The Verify Result section contains details of the two assessments in the test, and links to

the simulation output.

See Also

Related Examples
• “Link to Requirements” (Simulink Test)
• “Validate Requirements Links in a Model” (Requirements Toolbox)
• “Customize Requirements Traceability Report for Model” (Requirements Toolbox)

External Websites
• Requirements-Based Testing Workflow

10 Verification and Validation

10-6

https://youtu.be/0STxZbqOUXg

Analyze Models for Standards Compliance and Design Errors

Standards and Analysis Overview
During model development, check and analyze your model to increase confidence in its quality. Check
your model against standards such as MAB style guidelines and high-integrity system design
guidelines such as DO-178 and ISO 26262. Analyze your model for errors, dead logic, and conditions
that violate required properties. Using the analysis results, update your model and document
exceptions. Report the results using customizable templates.

Check Model for Style Guideline Violations and Design Errors
This example shows how to use the Model Advisor to check a cruise control model for MathWorks®

Advisory Board (MAB) style guideline violations and design errors. Select checks and run the analysis
on the model. Iteratively debug issues using the Model Advisor and rerun checks to verify that it is in
compliance. After passing your selected checks, report results.

Check Model for MAB Style Guideline Violations

Check that your model complies with MAB guidelines by using the Model Advisor.

1 Open the example project. On the command line, enter

openExample("shared_vnv/CruiseControlVerificationProjectExample");
pr = openProject("SimulinkVerificationCruise");

2 Open the simulinkCruiseErrorAndStandardsExample model.

open_system simulinkCruiseErrorAndStandardsExample
3 In the Modeling tab, select Model Advisor.
4 Click OK to select simulinkCruiseErrorAndStandardsExample from the System Hierarchy.
5 Check your model for MAB style guideline violations using Simulink Check.

a In the left pane, in the By Product > Simulink Check > Modeling Standards > MAB
Checks folder, select:

 Analyze Models for Standards Compliance and Design Errors

10-7

• Check Indexing Mode
• Check model diagnostic parameters

b Right-click on the MAB Checks node and select Run Checks.
c To review the configuration parameter settings that violate MAB style guidelines, run the

Check model diagnostic parameters check.
d The analysis results appear in the right pane on the Report tab. Report displays the violation

details and the recommended action.
e Click the parameter hyperlinks, which opens the Configuration Parameters dialog box, and

update the model diagnostic parameters. Save the model.
f To verify that your model passes, rerun the check. Repeat steps from c to e, if necessary, to

reach compliance.
g To generate a results report of the Simulink Check checks, select the MAB Checks node,

and then, from the toolstrip, click Report.

Check Model for Design Errors

While in the Model Advisor, you can also check your model for hidden design errors using Simulink
Design Verifier.

1 In the left pane, in the By Products > Simulink Design Verifier folder, select Design Error
Detection.

2 If not already checked, click the box beside Design Error Detection. All checks in the folder are
selected.

3 From the tool strip, click Run Checks.
4 After the Model Advisor analysis, from the tool strip, click Report. This generates a HTML report

of the check analysis.
5 In the generated report, click a Simulink Design Verifier Results Summary hyperlink. The

dialog box provides tools to help you diagnose errors and warnings in your model.

a Review the analysis results on the model. Click the Compute target speed subsystem.
The Simulink Design Verifier Results Inspector window provides derived ranges that can
help you understand the source of an error by identifying the possible signal values.

b Review the harness model or create one if it does not already exist.
c View tests and export test cases.
d Review the analysis report. To see a detailed analysis report, click HTML or PDF.

See Also

Related Examples
• “Check Model Compliance by Using the Model Advisor” (Simulink Check)
• “Collect Model Metrics Using the Model Advisor” (Simulink Check)
• “Analyze Models for Design Errors” (Simulink Design Verifier)
• “Prove Properties in a Model” (Simulink Design Verifier)

10 Verification and Validation

10-8

Perform Functional Testing and Analyze Test Coverage
Functional testing begins with building test cases based on requirements. These tests can cover key
aspects of your design and verify that individual model components meet requirements. Test cases
include inputs, expected outputs, and acceptance criteria.

By collecting individual test cases within test suites, you can run functional tests systematically. To
check for regression, add baseline criteria to the test cases and test the model iteratively. Coverage
measurement reflects the extent to which these tests have fully exercised the model. Coverage
measurement also helps you to add tests and requirements to meet coverage targets.

Incrementally Increase Test Coverage Using Test Case Generation
This example shows how to perform requirements-based tests for a cruise control model. The tests
link to a requirements document. You:

1 Run the tests.
2 Determine test coverage by using Simulink Coverage.
3 Increase coverage with additional tests generated by Simulink Design Verifier.
4 Report the results.

Open the Test Harness and Model

1 Open the project:

openExample("shared_vnv/CruiseControlVerificationProjectExample");
pr = openProject("SimulinkVerificationCruise");

2 Open the model and the test harness. At the command line, enter:

open_system simulinkCruiseAddReqExample
sltest.harness.open("simulinkCruiseAddReqExample","SafetyTest_Harness1")

 Perform Functional Testing and Analyze Test Coverage

10-9

3 Load the test suite from “Test Model Against Requirements and Report Results” (Simulink Test)
and open the Simulink Test Manager.

pf = fullfile(pr.RootFolder,"tests","slReqTests.mldatx");
tf = sltest.testmanager.TestFile(pf);
sltest.testmanager.view

4 Open the Test Sequence block. The sequence verifies system disengagement when either:

• The brake pedal is pressed.
• Speed exceeds a limit.

Measure Model Coverage

1 In the Simulink Test Manager, select the slReqTests test file.
2 To enable coverage collection, in the right page under Coverage Settings:

• Select Record coverage for referenced models.
• Specify a coverage filter by using Coverage filter filename.
• Select Decision, Condition, and MCDC.

3 Click Run on the Test Manager toolstrip.
4 After the test completes, select Results. The test achieves 50% decision coverage, 41% condition

coverage, and 25% MCDC coverage.

Generate Tests to Increase Model Coverage

1 Use Simulink Design Verifier to generate additional tests to increase model coverage. In Results
and Artifacts, select the slReqTests test file and open the Aggregated Coverage Results
section located in the right pane.

2 Right-click the test results and select Add Tests for Missing Coverage.
3 Under Harness, choose Create a new harness.
4 Click OK to add tests to the test suite using Simulink Design Verifier. The model being tested

must either be on the MATLAB path or in the working folder.
5 On the Test Manager toolstrip, click Run to execute the updated test suite. The test results

include coverage for the combined test case inputs, achieving increased model coverage.

Alternatively, you can create and use tests to increase coverage programmatically by using
sltest.testmanager.addTestsForMissingCoverage and
sltest.testmanager.TestOptions.

10 Verification and Validation

10-10

See Also

Related Examples
• “Link to Requirements” (Simulink Test)
• “Assess Model Simulation Using verify Statements” (Simulink Test)
• “Compare Model Output to Baseline Data” (Simulink Test)
• “Generate Test Cases for Model Decision Coverage” (Simulink Design Verifier)
• “Increase Test Coverage for a Model” (Simulink Test)

 Perform Functional Testing and Analyze Test Coverage

10-11

Analyze Code and Test Software-in-the-Loop

Code Analysis and Testing Software-in-the-Loop Overview
You can analyze code to detect errors, check standards compliance, and evaluate key metrics such as
length and cyclomatic complexity. For handwritten code, you typically check for run-time errors with
static code analysis and run test cases that evaluate the code against requirements and evaluate code
coverage. Based on the results, you refine the code and add tests.

In this example, you generate code and demonstrate that the code execution produces equivalent
results to the model by using the same test cases and baseline results. Then you compare the code
coverage to the model coverage. Based on test results, add tests and modify the model to regenerate
code.

Analyze Code for Defects, Metrics, and MISRA C:2012
This workflow describes how to check if your model produces MISRA™ C:2012 compliant code and
how to check your generated code for code metrics and defects. To produce more MISRA compliant
code from your model, you use the code generation and Model Advisor. To check whether the code is
MISRA compliant, you use the Polyspace MISRA C:2012 checker and report generation capabilities.
For this example, you use the model simulinkCruiseErrorAndStandardsExample. To open the
model:

1 Open the project.

openExample("shared_vnv/CruiseControlVerificationProjectExample");
pr = openProject("SimulinkVerificationCruise");

2 From the project, open the model simulinkCruiseErrorAndStandardsExample.

10 Verification and Validation

10-12

Run Code Generator Checks

Check your model by using the Code Generation Advisor. Configure code generation parameters to
generate code more compliant with MISRA C and more compatible with Polyspace.

1 Right-click Compute target speed and select C/C++ Code > Code Generation Advisor.
2 Select the Code Generation Advisor folder. In the right pane, move Polyspace to Selected

objectives - prioritized. The MISRA C:2012 guidelines objective is already selected.

3 Click Run Selected Checks.

The Code Generation Advisor checks whether the model includes blocks or configuration settings
that are not recommended for MISRA C:2012 compliance and Polyspace code analysis. For this

 Analyze Code and Test Software-in-the-Loop

10-13

model, the check for incompatible blocks passes, but some configuration settings are
incompatible with MISRA compliance and Polyspace checking.

4 Click the check that did not pass. Accept the parameter changes by selecting Modify
Parameters.

5 Rerun the check by selecting Run This Check.

Run Model Advisor Checks

Before you generate code from your model, use the Model Advisor to check your model for MISRA C
and Polyspace compliance. This example shows you how to use the Model Advisor to check your
model before generating code.

1 At the bottom of the Code Generation Advisor window, select Model Advisor.
2 Under the By Task folder, select the Modeling Standards for MISRA C:2012 advisor checks.
3 Click Run Checks and review the results.
4 If any of the tasks fail, make the suggested modifications and rerun the checks until the MISRA

modeling guidelines pass.

Generate and Analyze Code

After you have done the model compliance checking, you can generate the code. With Polyspace, you
can check your code for compliance with MISRA C:2012 and generate reports to demonstrate
compliance with MISRA C:2012.

1 In the Simulink editor, right-click Compute target speed and select C/C++ Code > Build This
Subsystem.

2 Use the default settings for the tunable parameters and select Build.
3 After the code is generated, in the Simulink Editor, right-click Compute target speed and select

Polyspace > Options.
4 Click Configure to choose more advanced Polyspace analysis options in the Polyspace

configuration window.

10 Verification and Validation

10-14

5 On the left pane, click Coding Standards & Code Metrics, then select Calculate Code
Metrics to enable code metric calculations for your generated code.

6 Save and close the Polyspace configuration window.
7 From your model, right-click Compute target speed and select Polyspace > Verify > Code

Generated For Selected Subsystem.

Polyspace Bug Finder analyzes the generated code for a subset of MISRA checks. You can see the
progress of the analysis in the MATLAB Command Window. After the analysis finishes, the
Polyspace environment opens.

Review Results

The Polyspace environment shows you the results of the static code analysis.

1 Expand the tree for rule 8.7 and click through the different results.

Rule 8.7 states that functions and objects should not be global if the function or object is local. As
you click through the 8.7 violations, you can see that these results refer to variables that other
components also use, such as CruiseOnOff. You can annotate your code or your model to justify
every result. Because this model is a unit in a larger program, you can also change the
configuration of the analysis to check only a subset of MISRA rules.

 Analyze Code and Test Software-in-the-Loop

10-15

2 In your model, right-click Compute target speed and select Polyspace > Options.
3 Set the Settings from option to Project configuration to choose a subset of MISRA rules

in the Polyspace configuration.
4 Click Configure.
5 In the Polyspace window, on the left pane, click Coding Standards & Code Metrics. Then

select Check MISRA C:2012 and, from the drop-down list, select single-unit-rules. Now
Polyspace checks only the MISRA C:2012 rules that are applicable to a single unit.

6 Save and close the Polyspace configuration window.
7 Rerun the analysis with the new configuration.

The rules Polyspace showed previously were found because the model was analyzed by itself.
When you limited the rules Polyspace checked to the single-unit subset, Polyspace found only two
violations.

10 Verification and Validation

10-16

When you integrate this model with its parent model, you can add the rest of the MISRA C:2012
rules.

Generate Report

To demonstrate compliance with MISRA C:2012 and report on your generated code metrics, you must
export your results. If you want to generate a report every time you run an analysis, see Generate
report (Polyspace Bug Finder).

1 If they are not open already, open your results in the Polyspace environment.
2 From the toolbar, select Reporting > Run Report.
3 Select BugFinderSummary as your report type.
4 Click Run Report.

The report is saved in the same folder as your results.
5 To open the report, select Reporting > Open Report.

Test Code Against Model Using Software-in-the-Loop Testing
You previously showed that the model functionality meets its requirements by running test cases
based on those requirements. Now run the same test cases on the generated code to show that the
code produces equivalent results and fulfills the requirements. Then compare the code coverage to
the model coverage to see the extent to which the tests exercised the generated code.

1 In MATLAB, in the project window, open the tests folder, then open SILTests.mldatx. The
file opens in the Test Manager.

 Analyze Code and Test Software-in-the-Loop

10-17

2 Review the test case. On the Test Browser pane, navigate to SIL Equivalence Test Case.
This equivalence test case runs two simulations for the
simulinkCruiseErrorAndStandardsExample model using a test harness.

• Simulation 1 is a model simulation in normal mode.
• Simulation 2 is a software-in-the-loop (SIL) simulation. For the SIL simulation, the test case

runs the code generated from the model instead of running the model.

The equivalence test logs one output signal and compares the results from the simulations. The
test case also collects coverage measurements for both simulations.

3 Run the equivalence test. Select the test case and click Run.
4 Review the results in the Test Manager. In the Results and Artifacts pane, select SIL

Equivalence Test Case to see the test results. The test case passed and the results show that
the code produced the same results as the model for this test case.

5 Expand the Coverage Results section of the results. The coverage measurements show the
extent to which the test case exercised the model and the code. When you run multiple test
cases, you can view aggregated coverage measurements in the results for the whole run. Use the
coverage results to add tests and meet coverage requirements, as shown in “Perform Functional
Testing and Analyze Test Coverage” (Simulink Check).

You can also test the generated code on your target hardware by running a processor-in-the-loop
(PIL) simulation. By adding a PIL simulation to your test cases, you can compare the test results and
coverage results from your model to the results from the generated code as it runs on the target
hardware. For more information, see “Code Verification Through Software-in-the-Loop and Processor-
in-the-Loop Execution” (Embedded Coder).

10 Verification and Validation

10-18

See Also

Related Examples
• “Run Polyspace Analysis on Code Generated with Embedded Coder” (Polyspace Bug Finder)
• “Test Two Simulations for Equivalence” (Simulink Test)
• “Export Test Results” (Simulink Test)

 Analyze Code and Test Software-in-the-Loop

10-19

	Model Coverage Definition
	Model Coverage
	Model Coverage Overview
	Types of Coverage Data

	Types of Model Coverage
	Execution Coverage (EC)
	Decision Coverage (DC)
	Condition Coverage (CC)
	Modified Condition/Decision Coverage (MCDC)
	Cyclomatic Complexity
	Lookup Table Coverage
	Signal Range Coverage
	Signal Size Coverage
	Objectives and Constraints Coverage
	Saturate on Integer Overflow Coverage
	Relational Boundary Coverage

	Simulink Optimizations and Model Coverage
	Inlined Parameters
	Block Reduction
	Conditional Input Branch Execution

	Model Objects That Receive Model Coverage
	Model Objects That Receive Coverage
	Abs
	Bias
	Combinatorial Logic
	Compare to Constant
	Compare to Zero
	Data Type Conversion
	Dead Zone
	Delay and Resettable Delay
	Direct Lookup Table (n-D)
	Discrete Filter
	Discrete FIR Filter
	Discrete-Time Integrator
	Discrete Transfer Fcn
	Dot Product
	Enabled Subsystem
	Enabled and Triggered Subsystem
	Fcn
	For Iterator, For Iterator Subsystem
	Gain
	If, If Action Subsystem
	Index Vector
	Interpolation Using Prelookup
	Library-Linked Objects
	Logical Operator
	1-D Lookup Table
	2-D Lookup Table
	n-D Lookup Table
	Math Function
	MATLAB Function
	MATLAB System
	Message Send
	MinMax
	Model
	Multiport Switch
	Observer Model
	PID Controller, PID Controller (2 DOF)
	Product
	Proof Assumption
	Proof Objective
	Rate Limiter
	Relational Operator
	Relay
	Requirements Table
	C/C++ S-Function
	Saturation
	Saturation Dynamic
	Sign
	Simulink Design Verifier Functions in MATLAB Function Blocks
	Sqrt, Signed Sqrt, Reciprocal Sqrt
	Sum, Add, Subtract, Sum of Elements
	Switch
	SwitchCase, SwitchCase Action Subsystem
	Test Condition
	Test Objective
	Triggered Models
	Triggered Subsystem
	Trigonometric Function
	Truth Table
	Unary Minus
	Weighted Sample Time Math
	While Iterator, While Iterator Subsystem

	Model Objects That Do Not Receive Coverage

	Setting Coverage Options
	Specify Coverage Options
	Coverage Pane

	Access, Manage, and Aggregate Coverage Results
	Accessing Coverage Data from the Results Explorer
	Managing Coverage Data from the Results Explorer
	Accumulating Coverage Data from the Results Explorer

	Cumulative Coverage Data
	Collect Coverage by Clicking the Run Button to Simulate Your Model
	Collect Coverage Using the Multiple Simulations Pane
	Collect Coverage for Multiple Tests Using the Test Manager in Simulink Test
	Collect Coverage Programmatically and Aggregate Results

	Cumulative Coverage Analysis
	Collect Saturation on Integer Overflow Coverage

	Code Coverage
	Types of Code Coverage
	Statement Coverage
	Condition Coverage
	Decision Coverage
	Modified Condition/Decision Coverage (MCDC)
	Cyclomatic Complexity
	Relational Boundary Coverage
	Function Coverage
	Function Call Coverage

	Code Coverage for Models in Software-in-the-Loop (SIL) Mode and Processor-in-the-Loop (PIL) Mode
	Enable SIL or PIL Code Coverage for a Model
	Review the Coverage Results for Models in SIL or PIL Mode
	Limitations

	Collect Code Coverage Metrics with Simulink Coverage
	Specify Code Coverage Options
	Models with Custom C/C++ Code Blocks
	Models with Software-in-the-Loop and Processor-in-the-Loop Mode Blocks
	Models with MATLAB Function Blocks

	Coverage for Models with Code Blocks and Simulink Blocks
	Software-in-the-Loop Code Coverage
	Use Justification Rules to Filter Code Coverage Outcomes
	View and Filter Code Coverage Results Using the Code Pane

	Coverage Collection During Simulation
	Create and Run Test Cases
	Modified Condition and Decision Coverage (MCDC) Definitions in Simulink Coverage
	Differences between Masking MCDC and Unique-Cause MCDC in Simulink Coverage Coverage Analysis
	Certification Considerations for MCDC Coverage
	Setting the (MCDC) Definition Used for Simulink Coverage Coverage Analysis
	Modified Condition and Decision Coverage in Simulink Design Verifier

	Modified Condition and Decision Coverage in Simulink Design Verifier
	MCDC Definitions for Simulink Coverage and Simulink Design Verifier

	Logical Operator Cascade Patterns
	Analyzing MCDC for Cascaded Logic Blocks
	View Coverage Results in Simulink Canvas
	Overview of Model Coverage Highlighting
	Enable Coverage Highlighting
	View Coverage Details

	Model Coverage for Multiple Instances of a Referenced Model
	About Coverage for Model Blocks
	Record Coverage for Multiple Instances of a Referenced Model

	Obtain Cumulative Coverage for Reusable Subsystems
	Trace Coverage Results to Requirements
	Prerequisites for Tracing Requirements Links

	Assess Coverage Results from Requirements-Based Tests
	Rationale for Scoping Coverage Results to Linked Requirements-Based Tests
	Prerequisites for Scoping Coverage Results to Linked Requirements-Based Tests
	Coverage Reporting for Aggregated Coverage Results Scoped to Linked Requirements
	Example

	Trace Coverage Results to Associated Test Cases
	Prerequisites for Tracing Associated Test Cases to Coverage Results
	Aggregate Unit-Level Coverage Data into Top-Level Model Coverage

	Model Coverage for MATLAB Functions
	Collecting Model Coverage for MATLAB Functions
	Types of Model Coverage for MATLAB Functions

	Model Coverage Reports for MATLAB Functions
	Coverage Reports for MATLAB Functions in a MATLAB Function Block
	Coverage Reports for Simulink Design Verifier MATLAB Functions
	Coverage Reports for MATLAB Functions in an External File

	Coverage for MATLAB Function Blocks
	Coverage for Custom C/C++ Code in Simulink Models
	Enable Code Coverage for Custom C/C++ code in MATLAB Function Blocks, C Caller Blocks, and Stateflow Charts
	Code Coverage for S-Functions

	View Coverage Results for Custom C/C++ Code in S-Function Blocks
	Coverage for S-Functions
	Model Coverage for Stateflow Charts
	Specify Coverage Report Settings for Stateflow Charts
	Model Coverage Reports for Stateflow Charts
	Code Coverage for C/C++ code in Stateflow Charts
	Model Coverage for Stateflow State Transition Tables

	Types of Coverage for Stateflow Charts
	Cyclomatic Complexity for Stateflow Charts
	Decision Coverage for Stateflow Charts
	Condition Coverage for Stateflow Charts
	MCDC Coverage for Stateflow Charts
	Relational Boundary Coverage for Stateflow Charts
	Simulink Design Verifier Coverage for Stateflow Charts

	Model Coverage Display for Stateflow Charts
	Display Model Coverage with Model Coloring

	Model Coverage for Stateflow Atomic Subcharts
	Model Coverage for Stateflow Truth Tables
	Types of Coverage in Stateflow Truth Tables
	Analyze Coverage in Stateflow Truth Tables

	Model Coverage for Variant Blocks
	Update-Time and Compile-Time Variants
	Startup Variants
	Customizing the Coverage Report for Models that Contain Variants

	Collect Coverage for Multiple Simulations by Using Design Studies

	Results Review
	Types of Coverage Reports
	Model Summary Report
	Model Reference Coverage Report
	External MATLAB File Coverage Report
	Subsystem Coverage Report
	Code Coverage Report

	Top-Level Model Coverage Report
	Analysis Information
	Aggregated Tests
	Coverage Summary
	Details
	Cyclomatic Complexity in the Model Coverage Report
	Decisions Analyzed
	Conditions Analyzed
	MCDC Analysis
	Cumulative Coverage
	N-Dimensional Lookup Table
	Block Reduction
	Relational Boundary
	Saturate on Integer Overflow Analysis
	Signal Range Analysis
	Signal Size Coverage for Variable-Dimension Signals
	Simulink Design Verifier Coverage

	Code Coverage Report
	Analysis Information
	Aggregated Tests
	Summary
	Details
	Cyclomatic Complexity
	Decisions Analyzed
	Conditions Analyzed
	MCDC Analysis
	Cumulative Coverage
	Relational Boundary

	Export Model Coverage Web View

	Filtering in Simulink Coverage
	Coverage Filtering
	When to Use Coverage Filtering
	What Is Coverage Filtering?

	Coverage Filter Rules and Files
	What Is a Coverage Filter Rule?
	What Is a Coverage Filter File?

	Model Objects to Filter from Coverage
	Create, Edit, and View Coverage Filter Rules
	Create and Edit Coverage Filter Rules
	Save Coverage Filter to File
	Create New Coverage Filter File
	Load Coverage Filter File
	Remove Applied Coverage Filter
	Manage Applied filters by Using the Test Manager in Simulink Test
	Update the Report with the Current Filter Settings
	View Coverage Filter Rules in Your Model

	View Applied Filters in the Coverage Results Explorer
	Creating and Using Coverage Filters

	Automating Model Coverage Tasks
	Automating Model Coverage Tasks
	Collect Coverage Data Using a Script
	Differences between sim and the Run Button
	Collecting Coverage with Simulink Test

	Analyze Coverage Data Using A Script
	Command Line Verification Tutorial
	Extracting Detailed Information from Coverage Data
	Perform Operations on Coverage Data
	Record Coverage in Parallel Simulations by Using Parsim
	Filter Coverage Results Using a Script

	Component Verification
	Component Verification
	Simulink Coverage Tools for Component Verification
	Workflow for Component Verification
	Verify a Component Independently of the Container Model
	Verify a Model Block in the Context of the Container Model

	Fix Requirements-Based Testing Issues

	Verification and Validation
	Test Model Against Requirements and Report Results
	Requirements – Test Traceability Overview
	Display the Requirements
	Link Requirements to Tests
	Run the Test
	Report the Results

	Analyze Models for Standards Compliance and Design Errors
	Standards and Analysis Overview
	Check Model for Style Guideline Violations and Design Errors

	Perform Functional Testing and Analyze Test Coverage
	Incrementally Increase Test Coverage Using Test Case Generation

	Analyze Code and Test Software-in-the-Loop
	Code Analysis and Testing Software-in-the-Loop Overview
	Analyze Code for Defects, Metrics, and MISRA C:2012
	Test Code Against Model Using Software-in-the-Loop Testing

